Advertisement

Structure of Eigenvalues in the Advection-Diffusion Equation by the Spectral Element Method on a Cubed-Sphere Grid

  • Suk-Jin Choi
Article
  • 20 Downloads

Abstract

To fundamentally understand discretized equations and differential operators, this study investigates the eigenvalues of the spherical gradient matrix and spherical Laplacian matrix discretized by the spectral element method (SEM) on the cubed-sphere grid (CS) for solid-body rotation. The gradient matrix with prescribed wind for the solid-body rotation has small positive real numbers in the eigenvalues, which implies that the solutions of the advection equation for solid-body rotation can be unstable and distorted. However, the unstable model can be effectively controlled by the Laplacian matrix, and all eigenvalues of the Laplacian matrix are aligned along the negative part of the real axis. The maximum eigenvalues of the gradient matrix and Laplacian matrix exhibit the characteristic of a linear function of the resolution, which is important to determine the upper limit of the time-step size for stable time integration. This study suggests suitable e-folding time scale of the diffusion using the 6th order for applications of the advection-diffusion equation. Regarding the characteristics of the eigenvalues, the setting of the stable time step is discussed. A method to implement the diffusion operators in the third-order Runge-Kutta time integration scheme in the advection-diffusion model is also discussed.

Key words

Eigensolutions spherical gradient matrix spherical Laplacian matrix spectral element method cubed-sphere grid advection-diffusion equation numerical weather prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheong, H.-B., and H.-G. Kang, 2015: Eigensolutions of the spherical Laplacian for the cubed-sphere and icosahedral-hexagonal grids. Quart. J. Roy. Meteor. Soc., 141, 3383-3398, doi:10.1002/qj.2620.CrossRefGoogle Scholar
  2. Choi, S.-J., and S.-Y. Hong, 2016: A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci., 52, 291-307, doi:10.1007/s13143-016-0005-0.CrossRefGoogle Scholar
  3. Choi, S.-J., F. X. Giraldo, J. Kim, and S. Shin, 2014: Verification of a nonhydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects. Geosci. Model Dev., 7, 2717-2731, doi:10.5194/gmd-7-2717-2014.CrossRefGoogle Scholar
  4. Dennis, J., J. Edwards, K. J. Evans, O. Guba, P. H. Lauritzen, A. A. Mirin, A. St-Cyr, M. A. Taylor, and P. H. Worley, 2011: CAM-SE: a scalable spectral element dynamical core for the community atmosphere model. Int. J. High Perform Comput. Appl., 26, 74-89, doi:10.1177/109434-2011428142.CrossRefGoogle Scholar
  5. Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer-Verlag, 465 pp.CrossRefGoogle Scholar
  6. Flyer, N., and G. B. Wright, 2007: Transport schemes on a sphere using radial basis function. J. Comput. Phys., 226, 1059-1084, doi:10.1016/j.jcp.2007.05.009.CrossRefGoogle Scholar
  7. Guba, O., M. Taylor, and A. St-Cyr, 2014: Optimization-based limiters for the spectral element method. J. Comput. Phys., 267, 176-195, doi: 10.1016/j.jcp.2014.02.029.CrossRefGoogle Scholar
  8. Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0028-9.Google Scholar
  9. Kajishima T., and K. Taira, 2017: Computational Fluid Dynamics: Incompressible Turbulent Flows. Springer International Publishing, 358 pp.CrossRefGoogle Scholar
  10. Lauritzen, P., C. Jablonowski, M.A. Taylor, and R.D. Nair, 2011: Numerical Techniques for Global Atmospheric Models, Springer, 577 pp.CrossRefGoogle Scholar
  11. Melvin, T., A. Staniforth, and J. Thuburn, 2012: Dispersion analysis of the spectral element method. Quart. J. Roy. Meteor. Soc., 138, 1934-1947, doi:10.1002/qj.1906.CrossRefGoogle Scholar
  12. Michoski, C., A. Alexanderian, C. Paillet, E. J. Kubatko, and C. Dawson, 2017: Stability of Nonlinear Convection-Diffusion-Reaction Systems in Discontinuous Galerkin Methods. J. Sci. Comput., 70, 516-550, doi:10.1007/s10915-016-0256-z.CrossRefGoogle Scholar
  13. Nair, R. D., S. J. Thomas, and R. D. Loft, 2005: A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Wea. Rev., 133, 814-828.CrossRefGoogle Scholar
  14. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note TN-475+STR, 113 pp.Google Scholar
  15. Song, H.-J., I.-H. Kwon, and J. Kim, 2017: Characteristics of a spectral inverse of the Laplacian using spherical harmonic functions on a cubedsphere grid for background error covariance modeling. Mon. Wea. Rev., 145, 307-322, doi:10.1175/MWR-D-16-0134.1.CrossRefGoogle Scholar
  16. Taylor, M., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92-108.CrossRefGoogle Scholar
  17. Ullrich, P.A., 2014: Understanding the treatment of waves in atmospheric models. Part I: The shortest resolved waves of the 1D linearized shallow-water equations. Quart. J. Roy. Meteor. Soc., 140, 1426-1440, doi: 10.1002/qj.2226.Google Scholar
  18. Weller, H., J. Thuburn, and C. J. Cotter, 2012: Computational modes and grid imprinting on five quasi-uniform spherical C grids. Mon. Wea. Rev., 140, 2734-2755, doi:10.1175/MWR-D-11-00193.1.CrossRefGoogle Scholar
  19. Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211-224.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Suk-Jin Choi
    • 1
    • 2
  1. 1.Korea Institute of Atmospheric Prediction Systems (KIAPS)SeoulKorea
  2. 2.Suk-Jin ChoiKorea Institute of Atmospheric Prediction SystemsSeoul 07071Korea

Personalised recommendations