Multi-resolution Hybrid Data Assimilation Core on a Cubed-sphere Grid (HybDA)
- 42 Downloads
- 2 Citations
Abstract
This study illustrates the characteristics of the data assimilation system at the Korea Institute of Atmospheric Prediction Systems (KIAPS), based on the cubed-sphere grid system. The most interesting feature is the use of spherical harmonic functions defined on cubed-sphere grid points, which makes it possible to control the allowable physical wavenumber for the analysis increments. The relevant computational costs and parallel scalability are represented. The multiple-resolution approach is a distinguishable aspect of this data assimilation system. The wavenumber, up to which the analysis is conducted, increases as the outer iteration progresses. This multiresolution strategy is based on an investigation into the change of spectral components of analysis increments. The multi-resolution outer-loop provides cost-effective analysis-improvement, by explicitly controlling the analysis increments entered into the observation operator. To utilize the high-resolution deterministic forecast as a background state, it is subtracted from the forecast ensemble, to produce ensemble forecast perturbation that is hybridized with static background error covariance. Based on the cycled analysis experiments, the higher-resolution deterministic forecast is shown to preserve the high-frequency feature of the analysis increment relative to the ensemble mean forecast.
Key words
Cubed sphere hybrid data assimilation parallel scalability multiple resolutions Korean Integrated ModelPreview
Unable to display preview. Download preview PDF.
References
- Amdahl, G. M., 1967: Validity of the single processor approach to achieving large scale computing capabilities. Proc. the AFIPS 1967 Spring Joint Computer Conference. Vol. 30, New Jersey, USA, AFIPS, 483-485, doi:10.1145/1465482.1465560.Google Scholar
- Andersson, E., and J.-N. Thépaut, 2008: ECMWF's 4D-Var data assimilation system-the genesis and ten years in operation. ECMWF Newsletter, 115, 8-12.Google Scholar
- Bormann, N., A. Geer, and T. Wilhelmsson, 2011: Operational implementation of RTTOV-10 in the IFS. Tech. Memo. No. 650, 23 pp.Google Scholar
- Bonavita, M., E. Hólm, L. Isaksen, and M. Fisher, 2016: The evolution of the ECMWF hybrid data assimilation system. Quart. J. Roy. Meteor. Soc., 142, 287-303, doi:10.1002/qj.2652.CrossRefGoogle Scholar
- Charney, J., 1955: The use of the primitive equations of motion in numerical prediction. Tellus, 7, 22-26, doi:10.3402/tellusa.v7i1.8772.CrossRefGoogle Scholar
- Choi, S.-J., and S.-Y. Hong, 2016: A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci., 52, 291-307, doi:10.1007/s13143-016-0005-0.CrossRefGoogle Scholar
- Choi, S.-J., F. X. Giraldo, J. Kim, and S. Shin, 2014: Verification of a nonhydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects. Geosci. Model Dev., 7, 2717-2731, doi:10.5194/gmd-7-2717-2014.CrossRefGoogle Scholar
- Dee, D. P., and A. M. da Silva, 2003: The choice of variable for atmospheric moisture analysis. Mon. Wea. Rev., 131, 155-171, doi:10. 1175/1520-0493(2003)131<0155:TCOVFA>2.0.CO;2.CrossRefGoogle Scholar
- Dennis, J., A. Fournier, W. F. Spotz, A. St-Cyr, M. A. Taylor, S. J. Thomas, and H. Tufo, 2005: High-resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core. Int. J. High Perform. Comput. Appl., 19, 225-235, doi:10.1177/1094342005056108.CrossRefGoogle Scholar
- Evans, K. J., P. H. Lauritzen, S. K. Mishra, R. B. Neale, M. A. Taylor, and J. J. Tribbia, 2013: AMIP simulation with the CAM4 spectral element dynamical core. J. Climate, 26, 689-709, doi: 10.1175/JCLI-D-11-00448.1.CrossRefGoogle Scholar
- Fisher, M., 2003: Background error covariance modelling. Proc. the Annual Seminar on Recent Development in Data Assimilation for Atmosphere and Ocean, 8-12 September 2003, Reading, UK, ECMWF, 45-63.Google Scholar
- Fisher, M., and S. Gürol, 2017: Parallelization in the time dimension of four-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 143, 1136-1147, doi:10.1002/qj.2997.CrossRefGoogle Scholar
- Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions, Quart. J. Roy. Meteor. Soc., 125, 723-757. doi:10.1002/qj.49712555417.CrossRefGoogle Scholar
- Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 2776-2790.CrossRefGoogle Scholar
- Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 1453-1468, doi:10.1002/qj.49712757418.CrossRefGoogle Scholar
- Hocking, J., P. Rayer, R. Saunders, M. Matricardi, A. Geer, and P. Brunel, 2012: RTTOV v10 Users Guide. NWPSAF-MO-UD-023, 92 pp.Google Scholar
- Holton, J. R., 2004: An Introduction to Dynamic Meteorology 4th Edition. Elsevier, 535 pp.Google Scholar
- Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0028-9.Google Scholar
- Hunt, B., E. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112-126, doi:10.1016/j.physd.2006.11.008.CrossRefGoogle Scholar
- Isaksen, L., M. Bonavita, R. Buizza, M. Fisher, J. Haseler, M. Leutbecher, and L. Raynaud, 2010: Ensemble of Data Assimilations at ECMWF, Tech. Memo. No. 636, 46 pp.Google Scholar
- Kang, J.-H., and Coauthors, 2018: Development of an observation processing package for data assimilation in KIAPS (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0030-2.Google Scholar
- Kim, J., Y. C. Kwon, and T.-H. Kim, 2018: A scalable high-performance I/O System for a numerical weather forecast model on the cubed-sphere grid (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0021-3.Google Scholar
- Kleist, D. T., and K. Ide, 2015a: An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452-470, doi: 10.1175/MWR-D-13-00350.1.CrossRefGoogle Scholar
- Kleist, D. T., and K. Ide, 2015b: An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433-451, doi:10.1175/MWR-D-13-00351.1.CrossRefGoogle Scholar
- Kuhl, D. D., T. E. Rosmond, C. H. Bishop, J. McLay, and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 2740-2758, doi:10.1175/MWR-D-12-00182.1.CrossRefGoogle Scholar
- Kwon, I.-H., and Coauthors, 2018: Development of operational hybrid data assimilation system at KIAPS (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0029-8.Google Scholar
- Lawless, A. S., and N. K. Nichols, 2006: Inner-loop stopping criteria for incremental four-dimensional variational data assimilation. Mon. Wea. Rev., 134, 3425-3435, doi:10.1175/MWR3242.1.CrossRefGoogle Scholar
- Lee, S., and H.-J. Song, 2017: Quantifying the inflation factors of observation error variance for COMS and MTSAT atmospheric motion vectors considering spatial observation error correlation. Quart. J. Roy. Meteor. Soc., 143, 2625-2635, doi: 10.1002/qj.3113.CrossRefGoogle Scholar
- Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—a comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 3183-3203, doi:10.1256/qj.02.132.CrossRefGoogle Scholar
- Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212-229, doi:10.1175/MWR-D-14-00195.1.CrossRefGoogle Scholar
- Lynch, P., 2008: The origins of computer weather prediction and climate modeling. J. Comput. Phys. 227, 3431-3444, doi:10.1016/j.jcp.2007. 02.034.CrossRefGoogle Scholar
- Nair, R. D., S. J. Thomas, and R. D. Loft, 2005: A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Wea. Rev. 133, 814-828, doi:10.1175/MWR2890.1.CrossRefGoogle Scholar
- Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.Google Scholar
- Song, H-J, and I.-H. Kwon, 2015: Spectral transformation using a cubedsphere grid for a three-dimensional variational data assimilation system. Mon. Wea. Rev., 143, 2581-2599, doi:10.1175/MWR-D-14-00089.1.CrossRefGoogle Scholar
- Song, H-J, I.-H. Kwon, and J. Kim, 2017a: Characteristics of a spectral inverse of the Laplacian using spherical harmonic functions on a cubed-sphere grid for background error covariance modeling. Mon. Wea. Rev., 145, 307-322, doi:10.1175/MWR-D-16-0134.1.CrossRefGoogle Scholar
- Song, H-J, J. Kwun, I.-H. Kwon, J.-H. Ha, J.-H. Kang, S. Lee, H.-W. Chun, and S. Lim, 2017b: The impact of the nonlinear balance equation on a 3D-Var cycle during an Australian-winter month as compared with the regressed wind-mass balance. Quart. J. Roy. Meteor. Soc. 143, 2036-2049, doi:10.1002/qj.3036.CrossRefGoogle Scholar
- Song, H-J, S. Shin, J.-H. Ha, and S. Lim, 2017c: The advantages of hybrid 4DEnVar in the context of the forecast sensitivity to initial conditions. J. Geophys. Res. 122, 12,226-12,244, doi:10.1002/2017JD027598.Google Scholar
- Shin, S., J. S. Kang, and Y. Jo, 2016: The local ensemble transform Kalman filter (LETKF) with a global NWP model on the cubed sphere. Pure Appl. Geophys., 173, 2555-2570, doi:10.1007/s00024-016-1269-0.CrossRefGoogle Scholar
- Song, H-J, and Coauthors, 2018: Real data assimilation using the Local Ensemble Transform Kalman Filter (LETKF) system for a global nonhydrostatic NWP model on the cubed-sphere (in press). Asia-Pac. J. Atmos. Sci., 54, doi: 10.1007/s13143-018-0022-2.Google Scholar
- Wu, W., R. J. Purser, D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev. 130, 2905-2916, doi:10.1175/1520-0493(2002)130<2905:TDVAWS> 2.0.CO;2.CrossRefGoogle Scholar
- Wu, W., D. F. Parrish, E. Rogers, and Y. Lin, 2017: Regional ensemblevariational data assimilation using global ensemble forecasts. Wea. Forecasting, 32, 83-96, doi:10.1175/WAF-D-16-0045.1.CrossRefGoogle Scholar