Advertisement

Combined Effects of El Niño and the Pacific Decadal Oscillation on Summertime Circulation over East Asia

  • Sang-Heon Lee
  • Kyong-Hwan SeoEmail author
  • Minho Kwon
Original Article
  • 10 Downloads

Abstract

The El Niño-Southern Oscillation (ENSO) and Pacific decadal oscillation (PDO) are the two major modes of sea surface temperature (SST) variability over equatorial and North Pacific regions, respectively. In this study, the combined effects of the ENSO and PDO on summertime circulation and precipitation fields over East Asia are investigated. Results show that SST forcing associated with a positive ENSO phase intensifies the anticyclonic circulation anomaly over the western North Pacific (WNP) region through a meridionally propagating Rossby wave train or via downward motion due to an overturning circulation stemming from equatorial central Pacific warming. A strong negative SST anomaly over the North Pacific during positive PDO phases increases local meridional temperature gradient and thus induces anomalous westerly winds along 35°N. This wind anomaly forms the northern margin of the anticyclonic circulation anomaly over the WNP. The combined effect of positive ENSO and positive PDO phases strengthens the anticyclonic circulation anomaly more than when these forcings are considered separately. Therefore, to the north of the anomaly, precipitation is enhanced due to the increased moisture flux transport and convergence along the rim of the WNP subtropical high.

Keywords

El Niño The Pacific decadal oscillation Western North Pacific subtropical high East Asia precipitation Combined effect 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2018R1A2A2A05018426) and the KMA Research and Development Program under Grant KMI 2018–01012. We would like to thank the two anonymous reviewers for their helpful comments and suggestions.

References

  1. Adler, R.F., Gu, G., Huffman, G.J.: Estimating climatological bias errors for the global precipitation climatology project (GPCP). J. Appl. Meteorol. Climatol. 51, 84–99 (2012).  https://doi.org/10.1175/JAMC-D-11-052.1
  2. Chan, J.C.L., Zhou, W.: PDO, ENSO and the early summer monsoon rainfall over South China. Geophys. Res. Lett. 32, L08810 (2005).  https://doi.org/10.1029/2004GL022015 Google Scholar
  3. Chang, C.-P., Zhang, Y., Li, T.: Interannual and interdecadal variations of the east Asian summer monsoon and tropical Pacific SSTs. Part I: roles of the subtropical ridge. J. Clim. 13, 4310–4325 (2000)CrossRefGoogle Scholar
  4. Dee, D., et al.: The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  5. Dong, X.: Influences of the Pacific decadal oscillation on the East Asian summer monsoon in non-ENSO years. Atmos. Sci. Lett. 17, 115–120 (2016)CrossRefGoogle Scholar
  6. Feng, J., Wang, L., Chen, W.: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases? J. Clim. 27, 2682–2698 (2014).  https://doi.org/10.1175/JCLI-D-13-00015.1 CrossRefGoogle Scholar
  7. Gill, A.E.: Some simple solutions for heat induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980)CrossRefGoogle Scholar
  8. Ham, Y.-G., Kug, J.-S., Yeh, S.-Y., Kwon, M.: Impacts of two distinct teleconnection patterns induced by Western Central Pacific SST anomalies on Korean temperature variability during the early boreal summer. J. Clim. 29, 743–759 (2016).  https://doi.org/10.1175/JCLI-D-15-0406.1 CrossRefGoogle Scholar
  9. Huffman, G.J., et al.: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc. 78, 5–20 (1997).  https://doi.org/10.1175/1520-0477(1997)078,0005:TGPCPG.2.0.CO;2
  10. Ju, J., Slingo, J.M.: The Asian summer monsoon and ENSO. Q. J. R. Meteorol. Soc. 121, 113–1168 (1995)CrossRefGoogle Scholar
  11. Kim, J.-W., Yeh, S.-W., Chang, E.-C.: Combined effect of El Niño-southern oscillation and Pacific decadal oscillation on the East Asian winter monsoon. Clim Dyn. 42, 957–971 (2014).  https://doi.org/10.1007/s00382-013-1730-z CrossRefGoogle Scholar
  12. Lee, S.-E., Seo, K.-H.: The development of a statistical forecast model for Changma. Weather. Forecast. 28, 1304–1321 (2013).  https://doi.org/10.1175/WAF-D-13-00003.1 CrossRefGoogle Scholar
  13. Lu, R., Dong, B.W.: Westward extension of North Pacific subtropical high in summer. J. Meteor. Soc. Japan. 79, 1229–1241 (2001)CrossRefGoogle Scholar
  14. Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., Francis, R.C.: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997)CrossRefGoogle Scholar
  15. Park, J.-Y., Jhun, J.-G., Yim, S.-Y., Kim, W.-M.: Decadal changes in two types of the western North Pacific subtropical high in boreal summer associated with Asian summer monsoon/ El Niño–southern oscillation connections. J. Geophys. Res. 115, D21129 (2010).  https://doi.org/10.1029/2009JD013642 CrossRefGoogle Scholar
  16. Park, H.-L., Seo, K.-H., Son, J.-H.: Development of a dynamics-based statistical prediction model for the Changma onset. J. Clim. 28, 6647–6666 (2015).  https://doi.org/10.1175/JCLI-D-14-00502.1 CrossRefGoogle Scholar
  17. Rasmusson, E.M., Carpenter, T.H.: Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/El Niño. Mon. Weather. Rev. 110, 354–384 (1982)CrossRefGoogle Scholar
  18. Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., Wang, W.: An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002)CrossRefGoogle Scholar
  19. Sampe, T., Nakamura, H., Goto, A., Ohfuchi, W.: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Clim. 23, 1793–1814 (2010)CrossRefGoogle Scholar
  20. Schneider, N., Cornuelle, B.D.: The forcing of the Pacific decadal oscillation. J. Clim. 18, 4355–4373 (2005)CrossRefGoogle Scholar
  21. Seo, K.-H., Son, J.-H., Lee, J.-Y., Park, H.-S.: Northern east Asian monsoon precipitation revealed by airmass variability and its prediction. J. Clim. 28, 6221–6233 (2015)CrossRefGoogle Scholar
  22. Sui, C.-H., Chung, P.-H., Li, T.: Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett. 34, L11701 (2007).  https://doi.org/10.1029/2006GL029204
  23. Wang, B., Zhang, Q.: Pacific–east Asian teleconnection. Part II: how the Philippine Sea anomalous anticyclone is established during El Niño development. J. Clim. 15, 3252–3265 (2002)CrossRefGoogle Scholar
  24. Wang, B., Wu, R.G., Fu, X.H.: Pacific-East Asian teleconnection: how does ENSO affect east Asian climate? J. Clim. 13, 1517–1536 (2000)CrossRefGoogle Scholar
  25. Wang, B., Xiang, B., Lee, J.-Y.: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. PNAS. 110, 2718–2722 (2013).  https://doi.org/10.1073/pnas.1214626110 CrossRefGoogle Scholar
  26. Watanabe, M., Kimoto, M.: Atmosphere-ocean thermal coupling in the North Atlantic: a positive feedback. Q. J. R. Meteorol. Soc. 126, 3343–3369 (2000).  https://doi.org/10.1002/qj.49712657017 CrossRefGoogle Scholar
  27. Webster, P.J., Yang, S.: Monsoon and ENSO: selectively interactive systems. Q. J. R. Meteorol. Soc. 118, 877–926 (1992)CrossRefGoogle Scholar
  28. Webster, P.J., Magana, V.O., Palmer, T.N., Shukla, J., Tomas, R.A., Yanai, M., Yasunari, T.: Monsoons: processes, predictability, and the prospects for prediction. J. Geophys. Res. 103(C7), 14,451–14,510 (1998)CrossRefGoogle Scholar
  29. Wu, X., Mao, J.: Interdecadal modulation of ENSO-related spring rainfall over South China by the Pacific decadal oscillation. Clim. Dyn. 47, 3203–3220 (2016)CrossRefGoogle Scholar
  30. Xiang, B., Wang, B., Yu, W., Xu, S.: How can anomalous western North Pacific subtropical high intensify in late summer? Geophys. Res. Lett. 40, 2349–2354 (2013).  https://doi.org/10.1002/grl.50431 CrossRefGoogle Scholar
  31. Yanai, M., Esbensen, S., Chu, J.-H.: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci. 30, 611–627 (1973)CrossRefGoogle Scholar
  32. Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B., Jin, F.-F.: El Niño in a changing climate. Nature. 461, 511–514 (2009).  https://doi.org/10.1038/nature08316 CrossRefGoogle Scholar
  33. Yoon, J., Yeh, S.-W.: Influence of the Pacific decadal oscillation on the relationship between El Niño and the northeast Asian summer monsoon. J. Clim. 23, 4525–4537 (2010).  https://doi.org/10.1175/2010JCLI3352.1 CrossRefGoogle Scholar
  34. Yu, L., Furevik, T., Otterå, O.H., Gao, Y.: Modulation of the Pacific decadal oscillation on the summer precipitation over East China: a comparison of observations to 600-yrs control run of Bergen climate model. Clim Dyn. 44, 475–494 (2015).  https://doi.org/10.1007/s00382-014-2141-5 CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Atmospheric Sciences, Division of Earth Environmental SystemPusan National UniversityBusanSouth Korea
  2. 2.Korea Institute of Ocean Science & TechnologyBusanSouth Korea

Personalised recommendations