Radioembolization for the Treatment of Primary and Metastatic Liver Cancers

  • Eun Jeong Lee
  • Hyun Woo ChungEmail author
  • Joon-Hyung Jo
  • Young So


Radioembolization using 90Y microspheres (glass or resin) has been introduced as an effective intraarterial therapy for unresectable primary and metastatic liver cancers. Although the basic therapeutic effect of chemoembolization results from ischemia, the therapeutic efficacy of radioembolization comes from radiation. Furthermore, compared with surgical resection and local ablation therapy, radioembolization is available with less limitation on the sites or number of liver cancers. The radioisotope 90Y is a β-radiation emitter without γ-radiation, with the emission of secondary bremsstrahlung photons and small numbers of positrons. Administration of 90Y microspheres into the hepatic artery can deliver a high dose of radiation selectively to the target tumor with limited radiation exposure to the surrounding normal parenchyma, and has low systemic toxicity. In general, radioembolization has been considered for patients with unresectable primary or metastatic liver-only or liver-dominant cancers with no ascites or other clinical signs of liver failure, life expectancy of > 12 weeks, and good performance status. Here, we review the current radioactive compounds, pretreatment assessment, and indications for radioembolization in patients with hepatocellular carcinoma, intrahepatic cholangiocarcinoma, and liver metastases from colorectal cancer.


Radioembolization Yttrium-90 Hepatocellular carcinoma Intrahepatic cholangiocarcinoma Liver metastasis 



This paper was written as part of Konkuk University's research support program for its faculty on sabbatical leave in 2019.

Compliance with Ethical Standards

Conflict of Interest

Eun Jeong Lee, Hyun Woo Chung, Joon Hyung Jo, and Young So declare that they have no conflicts of interest.

Ethical Statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed Consent

For this type of study, formal consent is not required and informed consent is not applicable.


  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRefGoogle Scholar
  2. 2.
    Endo I, Gonen M, Yopp AC, Dalal KM, Zhou Q, Klimstra D, et al. Intrahepatic cholangiocarcinoma: rising frequency, improved survival, and determinants of outcome after resection. Ann Surg. 2008;248:84–96.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Grandhi MS, Kim AK, Ronnekleiv-Kelly SM, Kamel IR, Ghasebeh MA, Pawlik TM. Hepatocellular carcinoma: from diagnosis to treatment. Surg Oncol. 2016;25:74–85.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Doherty B, Nambudiri VE, Palmer WC. Update on the diagnosis and treatment of cholangiocarcinoma. Curr Gastroenterol Rep. 2017;19(2):017–0542-4.Google Scholar
  5. 5.
    Hickey R, Lewandowski RJ, Prudhomme T, Ehrenwald E, Baigorri B, Critchfield J, et al. 90Y radioembolization of colorectal hepatic metastases using glass microspheres: safety and survival outcomes from a 531-patient multicenter study. J Nucl Med. 2016;57:665–71.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tomlinson JS, Jarnagin WR, DeMatteo RP, Fong Y, Kornprat P, Gonen M, et al. Actual 10-year survival after resection of colorectal liver metastases defines cure. J Clin Oncol. 2007;25:4575–80.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Voutsinas N, Lekperic S, Barazani S, Titano JJ, Heiba SI, Kim E. Treatment of primary liver tumors and liver metastases, part 1: nuclear medicine techniques. J Nucl Med. 2018;59:1649–54.PubMedCrossRefGoogle Scholar
  8. 8.
    Giammarile F, Bodei L, Chiesa C, Flux G, Forrer F, Kraeber-Bodere F, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2011;38:1393–406.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kim YC, Kim YH, Uhm SH, Seo YS, Park EK, Oh SY, et al. Radiation safety issues in y-90 microsphere selective hepatic radioembolization therapy: possible radiation exposure from the patients. Nucl Med Mol Imaging. 2010;44:252–60.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Carr BI. Hepatic arterial 90Yttrium glass microspheres (therasphere) for unresectable hepatocellular carcinoma: interim safety and survival data on 65 patients. Liver Transpl. 2004;10:S107–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Coldwell D, Sangro B, Wasan H, Salem R, Kennedy A. General selection criteria of patients for radioembolization of liver tumors: an international working group report. Am J Clin Oncol. 2011;34:337–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Lin KH, Chen YW, Lee RC, Wang LW, Chou FI, Chang CW, et al. Nuclear theranostics in Taiwan. Nucl Med Mol Imaging. 2019;53:86–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Herba MJ, Illescas FF, Thirlwell MP, Boos GJ, Rosenthall L, Atri M, et al. Hepatic malignancies: improved treatment with intraarterial Y-90. Radiology. 1988;169:311–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Wollner I, Knutsen C, Smith P, Prieskorn D, Chrisp C, Andrews J, et al. Effects of hepatic arterial yttrium 90 glass microspheres in dogs. Cancer. 1988;61:1336–44.PubMedCrossRefGoogle Scholar
  15. 15.
    Gray BN, Burton MA, Kelleher DK, Anderson J, Klemp P. Selective internal radiation (SIR) therapy for treatment of liver metastases: measurement of response rate. J Surg Oncol. 1989;42:192–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Andrews JC, Walker SC, Ackermann RJ, Cotton LA, Ensminger WD, Shapiro B. Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med. 1994;35:1637–44.PubMedGoogle Scholar
  17. 17.
    Dancey JE, Shepherd FA, Paul K, Sniderman KW, Houle S, Gabrys J, et al. Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med. 2000;41:1673–81.PubMedGoogle Scholar
  18. 18.
    Van Hazel G, Blackwell A, Anderson J, Price D, Moroz P, Bower G, et al. Randomised phase 2 trial of SIR-spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol. 2004;88:78–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Saini A, Wallace A, Alzubaidi S, Knuttinen MG, Naidu S, Sheth R, et al. History and evolution of yttrium-90 radioembolization for hepatocellular carcinoma. J Clin Med. 2019;8. Scholar
  20. 20.
    Murthy R, Nunez R, Szklaruk J, Erwin W, Madoff DC, Gupta S, et al. Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics. 2005;25(Suppl 1):S41–55.PubMedCrossRefGoogle Scholar
  21. 21.
    Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: technical and methodologic considerations. J Vasc Interv Radiol. 2006;17:1251–78.PubMedCrossRefGoogle Scholar
  22. 22.
    Inarrairaegui M, Pardo F, Bilbao JI, Rotellar F, Benito A, D'Avola D, et al. Response to radioembolization with yttrium-90 resin microspheres may allow surgical treatment with curative intent and prolonged survival in previously unresectable hepatocellular carcinoma. Eur J Surg Oncol. 2012;38:594–601.PubMedCrossRefGoogle Scholar
  23. 23.
    Cremonesi M, Chiesa C, Strigari L, Ferrari M, Botta F, Guerriero F, et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol. 2014;4:210.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Sato K, Lewandowski RJ, Bui JT, Omary R, Hunter RD, Kulik L, et al. Treatment of unresectable primary and metastatic liver cancer with yttrium-90 microspheres (TheraSphere): assessment of hepatic arterial embolization. Cardiovasc Intervent Radiol. 2006;29:522–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Spreafico C, Maccauro M, Mazzaferro V, Chiesa C. The dosimetric importance of the number of 90Y microspheres in liver transarterial radioembolization (TARE). Eur J Nucl Med Mol Imaging. 2014;41:634–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Sofocleous CT, Violari EG, Sotirchos VS, Shady W, Gonen M, Pandit-Taskar N, et al. Radioembolization as a salvage therapy for heavily pretreated patients with colorectal cancer liver metastases: factors that affect outcomes. Clin Colorectal Cancer. 2015;14:296–305.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Nezami N, Kokabi N, Camacho JC, Schuster DM, Xing M, Kim HS. (90)Y radioembolization dosimetry using a simple semi-quantitative method in intrahepatic cholangiocarcinoma: glass versus resin microspheres. Nucl Med Biol. 2018;59:22–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Piana PM, Bar V, Doyle L, Anne R, Sato T, Eschelman DJ, et al. Early arterial stasis during resin-based yttrium-90 radioembolization: incidence and preliminary outcomes. HPB (Oxford). 2014;16:336–41.CrossRefGoogle Scholar
  29. 29.
    Kennedy AS, Ball D, Cohen SJ, Cohn M, Coldwell DM, Drooz A, et al. Multicenter evaluation of the safety and efficacy of radioembolization in patients with unresectable colorectal liver metastases selected as candidates for (90)Y resin microspheres. J Gastrointest Oncol. 2015;6:134–42.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Bishay VL, Biederman DM, Ward TJ, van der Bom IM, Patel RS, Kim E, et al. Transradial approach for hepatic radioembolization: initial results and technique. AJR Am J Roentgenol. 2016;207:1112–21.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lambert B, Mertens J, Sturm EJ, Stienaers S, Defreyne L, D'Asseler Y. 99mTc-labelled macroaggregated albumin (MAA) scintigraphy for planning treatment with 90Y microspheres. Eur J Nucl Med Mol Imaging. 2010;37:2328–33.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Leung TW, Lau WY, Ho SK, Ward SC, Chow JH, Chan MS, et al. Radiation pneumonitis after selective internal radiation treatment with intraarterial 90yttrium-microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys. 1995;33:919–24.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Ho S, Lau WY, Leung TW, Chan M, Johnson PJ, Li AK. Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. Eur J Nucl Med. 1997;24:293–8.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Zarva A, Mohnike K, Damm R, Ruf J, Seidensticker R, Ulrich G, et al. Safety of repeated radioembolizations in patients with advanced primary and secondary liver tumors and progressive disease after first selective internal radiotherapy. J Nucl Med. 2014;55:360–6.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Lam MG, Louie JD, Iagaru AH, Goris ML, Sze DY. Safety of repeated yttrium-90 radioembolization. Cardiovasc Intervent Radiol. 2013;36:1320–8.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–14.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Okuda K, Ohtsuki T, Obata H, Tomimatsu M, Okazaki N, Hasegawa H, et al. Natural history of hepatocellular carcinoma and prognosis in relation to treatment. Study of 850 patients. Cancer. 1985;56:918–28.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Schafer DF, Sorrell MF. Hepatocellular carcinoma. Lancet. 1999;353:1253–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Novell JR, Hilson A, Hobbs KE. Therapeutic aspects of radio-isotopes in hepatobiliary malignancy. Br J Surg. 1991;78:901–6.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Llovet JM, Real MI, Montana X, Planas R, Coll S, Aponte J, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359:1734–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Lo CM, Ngan H, Tso WK, Liu CL, Lam CM, Poon RT, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology. 2002;35:1164–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Hu HT, Kim JH, Lee LS, Kim KA, Ko GY, Yoon HK, et al. Chemoembolization for hepatocellular carcinoma: multivariate analysis of predicting factors for tumor response and survival in a 362-patient cohort. J Vasc Interv Radiol. 2011;22:917–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Salem R, Gordon AC, Mouli S, Hickey R, Kallini J, Gabr A, et al. Y90 radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology. 2016;151:1155,1163.e2.CrossRefGoogle Scholar
  44. 44.
    Silva JP, Berger NG, Tsai S, Christians KK, Clarke CN, Mogal H, et al. Transarterial chemoembolization in hepatocellular carcinoma with portal vein tumor thrombosis: a systematic review and meta-analysis. HPB (Oxford). 2017;19:659–66.CrossRefGoogle Scholar
  45. 45.
    Vilgrain V, Pereira H, Assenat E, Guiu B, Ilonca AD, Pageaux GP, et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol. 2017;18:1624–36.PubMedCrossRefGoogle Scholar
  46. 46.
    Chow PKH, Gandhi M, Tan SB, Khin MW, Khasbazar A, Ong J, et al. SIRveNIB: selective internal radiation therapy versus sorafenib in Asia-Pacific patients with hepatocellular carcinoma. J Clin Oncol. 2018;36:1913–21.PubMedCrossRefGoogle Scholar
  47. 47.
    European Association for the Study of the Liver. Electronic address:, European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.CrossRefGoogle Scholar
  48. 48.
    Benson AB,3rd, D'Angelica MI, Abbott DE, Abrams TA, Alberts SR, Saenz DA, et al. NCCN guidelines insights: hepatobiliary cancers, version 1.2017. J Natl Compr Cancer Netw. 2017;15:563–73.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Morise Z, Sugioka A, Tokoro T, Tanahashi Y, Okabe Y, Kagawa T, et al. Surgery and chemotherapy for intrahepatic cholangiocarcinoma. World J Hepatol. 2010;2:58–64.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lee Y, Yoo IR, Boo SH, Kim H, Park HL, Hyun OJ. The role of F-18 FDG PET/CT in intrahepatic cholangiocarcinoma. Nucl Med Mol Imaging. 2017;51:69–78.CrossRefGoogle Scholar
  51. 51.
    Kuhlmann JB, Euringer W, Spangenberg HC, Breidert M, Blum HE, Harder J, et al. Treatment of unresectable cholangiocarcinoma: conventional transarterial chemoembolization compared with drug eluting bead-transarterial chemoembolization and systemic chemotherapy. Eur J Gastroenterol Hepatol. 2012;24:437–43.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Currie BM, Soulen MC. Decision making: intra-arterial therapies for cholangiocarcinoma-TACE and TARE. Semin Intervent Radiol. 2017;34:92–100.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Scheuermann U, Kaths JM, Heise M, Pitton MB, Weinmann A, Hoppe-Lotichius M, et al. Comparison of resection and transarterial chemoembolisation in the treatment of advanced intrahepatic cholangiocarcinoma—a single-center experience. Eur J Surg Oncol. 2013;39:593–600.PubMedCrossRefGoogle Scholar
  54. 54.
    Ibrahim SM, Mulcahy MF, Lewandowski RJ, Sato KT, Ryu RK, Masterson EJ, et al. Treatment of unresectable cholangiocarcinoma using yttrium-90 microspheres: results from a pilot study. Cancer. 2008;113:2119–28.PubMedCrossRefGoogle Scholar
  55. 55.
    Hoffmann RT, Paprottka PM, Schon A, Bamberg F, Haug A, Durr EM, et al. Transarterial hepatic yttrium-90 radioembolization in patients with unresectable intrahepatic cholangiocarcinoma: factors associated with prolonged survival. Cardiovasc Intervent Radiol. 2012;35:105–16.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Reimer P, Virarkar MK, Binnenhei M, Justinger M, Schon MR, Tatsch K. Prognostic factors in overall survival of patients with unresectable intrahepatic cholangiocarcinoma treated by means of yttrium-90 radioembolization: results in therapy-naive patients. Cardiovasc Intervent Radiol. 2018;41:744–52.PubMedCrossRefGoogle Scholar
  57. 57.
    Boas FE, Brody LA, Erinjeri JP, Yarmohammadi H, Shady W, Kishore S, et al. Quantitative measurements of enhancement on preprocedure triphasic CT can predict response of colorectal liver metastases to radioembolization. AJR Am J Roentgenol. 2016;207:671–5.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hendlisz A, Van den Eynde M, Peeters M, Maleux G, Lambert B, Vannoote J, et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol. 2010;28:3687–94.PubMedCrossRefGoogle Scholar
  59. 59.
    Seidensticker R, Denecke T, Kraus P, Seidensticker M, Mohnike K, Fahlke J, et al. Matched-pair comparison of radioembolization plus best supportive care versus best supportive care alone for chemotherapy refractory liver-dominant colorectal metastases. Cardiovasc Intervent Radiol. 2012;35:1066–73.PubMedCrossRefGoogle Scholar
  60. 60.
    Gray B, Van Hazel G, Hope M, Burton M, Moroz P, Anderson J, et al. Randomised trial of SIR-spheres plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer. Ann Oncol. 2001;12:1711–20.PubMedCrossRefGoogle Scholar
  61. 61.
    Gibbs P, Gebski V, Van Buskirk M, Thurston K, Cade DN, Van Hazel GA, et al. Selective internal radiation therapy (SIRT) with yttrium-90 resin microspheres plus standard systemic chemotherapy regimen of FOLFOX versus FOLFOX alone as first-line treatment of non-resectable liver metastases from colorectal cancer: the SIRFLOX study. BMC Cancer. 2014;14:897,2407–14-897.CrossRefGoogle Scholar
  62. 62.
    Dutton SJ, Kenealy N, Love SB, Wasan HS, Sharma RA, FOXFIRE Protocol Development Group and the NCRI Colorectal Clinical Study Group. FOXFIRE protocol: an open-label, randomised, phase III trial of 5-fluorouracil, oxaliplatin and folinic acid (OxMdG) with or without interventional selective internal radiation therapy (SIRT) as first-line treatment for patients with unresectable liver-only or liver-dominant metastatic colorectal cancer. BMC Cancer. 2014;14(497):2407–14-497.Google Scholar
  63. 63.
    van Hazel GA, Heinemann V, Sharma NK, Findlay MP, Ricke J, Peeters M, et al. SIRFLOX: randomized phase III trial comparing first-line mFOLFOX6 (plus or minus bevacizumab) versus mFOLFOX6 (plus or minus bevacizumab) plus selective internal radiation therapy in patients with metastatic colorectal cancer. J Clin Oncol. 2016;34:1723–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Virdee PS, Moschandreas J, Gebski V, Love SB, Francis EA, Wasan HS, et al. Protocol for combined analysis of FOXFIRE, SIRFLOX, and FOXFIRE-global randomized phase III trials of chemotherapy +/- selective internal radiation therapy as first-line treatment for patients with metastatic colorectal cancer. JMIR Res Protoc. 2017;6:e43.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wasan HS, Gibbs P, Sharma NK, Taieb J, Heinemann V, Ricke J, et al. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol. 2017;18:1159–71.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Korean Society of Nuclear Medicine 2019

Authors and Affiliations

  1. 1.Department of Nuclear MedicineSeoul Medical CenterSeoulSouth Korea
  2. 2.Departments of Nuclear MedicineKonkuk University Medical Center, Konkuk University School of MedicineSeoulSouth Korea

Personalised recommendations