Nuclear Theranostics in Taiwan

  • Ko-Han Lin
  • Yi-Wei Chen
  • Rheun-Chuan Lee
  • Ling-Wei Wang
  • Fong-In Chou
  • Chi-Wei Chang
  • Sang-Hue YenEmail author
  • Wen-Sheng HuangEmail author


Boron neutron capture therapy and Y-90 radioembolization are emerging therapeutic methods for uncontrolled brain cancers and hepatic cancers, respectively. These advanced radiation therapies are heavily relied on theranostic nuclear medicine imaging before the therapy for the eligibility of patients and the prescribed-dose simulation, as well as the post-therapy scanning for assessing the treatment efficacy. In Taiwan, the Taipei Veterans General Hospital is the only institute performing the BNCT and also the leading institute performing Y-90 radioembolization. In this article, we present our single institute experiences and associated theranostic nuclear medicine approaches for these therapies.


BNCT Radioembolization FBPA-PET Tc-MAA 



The authors thank Doctor Yu-Hui, Hu for editorial assistance.

Author Contribution

Ko-Han Lin, Yi-Wei Chen and Rheun-Chuan Lee contribute equally.

Compliance with Ethical Standards

Conflict of Interest

Ko-Han Lin, Yi-Wei Chen, Rheun-Chuan Lee, Ling-Wei Wang, Fong-In Chou, Chi-Wei Chang, Sang-Hue Yen, and Wen-Sheng Huang declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Barth RF, Zhang Z, Liu T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun (Lond). 2018;38:36.CrossRefGoogle Scholar
  2. 2.
    Barth RF, Coderre JA, Vicente MG, Blue TE. Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res. 2005;11:3987–4002.CrossRefGoogle Scholar
  3. 3.
    Wongthai P, Hagiwara K, Miyoshi Y, Wiriyasermkul P, Wei L, Ohgaki R, et al. Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2. Cancer Sci. 2015;106:279–86.CrossRefGoogle Scholar
  4. 4.
    Ishiwata K, Ido T, Kawamura M, Kubota K, Ichihashi M, Mishima Y. 4-Borono-2-[18F]fluoro-D,L-phenylalanine as a target compound for boron neutron capture therapy: tumor imaging potential with positron emission tomography. Int J Rad Appl Instrum B. 1991;18:745–51.CrossRefGoogle Scholar
  5. 5.
    Imahori Y, Ueda S, Ohmori Y, Kusuki T, Ono K, Fujii R, et al. Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med. 1998;39:325–33.Google Scholar
  6. 6.
    Watanabe T, Hattori Y, Ohta Y, Ishimura M, Nakagawa Y, Sanada Y, et al. Comparison of the pharmacokinetics between L-BPA and L-FBPA using the same administration dose and protocol: a validation study for the theranostic approach using [(18)F]-L-FBPA positron emission tomography in boron neutron capture therapy. BMC Cancer. 2016;16:859.CrossRefGoogle Scholar
  7. 7.
    Yoshimoto M, Honda N, Kurihara H, Hiroi K, Nakamura S, Ito M, et al. Non-invasive estimation of (10) B-4-borono-L-phenylalanine-derived boron concentration in tumors by PET using 4-borono-2-(18) F-fluoro-phenylalanine. Cancer Sci. 2018;109:1617–26.CrossRefGoogle Scholar
  8. 8.
    Wang LW, Wang SJ, Chu PY, Ho CY, Jiang SH, Liu YW, et al. BNCT for locally recurrent head and neck cancer: preliminary clinical experience from a phase I/II trial at Tsing Hua Open-Pool Reactor. Appl Radiat Isot. 2011;69:1803–6.CrossRefGoogle Scholar
  9. 9.
    Wang LW, Chen YW, Ho CY, Hsueh Liu YW, Chou FI, Liu YH, et al. Fractionated boron neutron capture therapy in locally recurrent head and neck cancer: a prospective phase I/II trial. Int J Radiat Oncol Biol Phys. 2016;95:396–403.CrossRefGoogle Scholar
  10. 10.
    Kreiner AJ, Bergueiro J, Cartelli D, Baldo M, Castell W, Asoia JG, et al. Present status of accelerator-based BNCT. Rep Pract Oncol Radiother. 2016;21(2):95–101.CrossRefGoogle Scholar
  11. 11.
    Yamazaki H, Kanno SI, Abdjul DB, Namikoshi M. A bromopyrrole-containing diterpene alkaloid from the Okinawan marine sponge Agelas nakamurai activates the insulin pathway in Huh-7 human hepatoma cells by inhibiting protein tyrosine phosphatase 1B. Bioorg Med Chem Lett. 2017;27:2207–9.CrossRefGoogle Scholar
  12. 12.
    Chiesa C, Maccauro M, Romito R, Spreafico C, Pellizzari S, Negri A, et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: the experience of the National Tumor Institute of Milan. Q J Nucl Med Mol Imaging. 2011;55:168–97.Google Scholar
  13. 13.
    Garin E, Rolland Y, Laffont S, Edeline J. Clinical impact of (99m)Tc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with (90)Y-loaded microspheres. Eur J Nucl Med Mol Imaging. 2016;43:559–75.CrossRefGoogle Scholar
  14. 14.
    Shen S, DeNardo GL, Yuan A, DeNardo DA, DeNardo SJ. Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung. J Nucl Med. 1994;35:1381–9.Google Scholar
  15. 15.
    Sarfaraz M, Kennedy AS, Lodge MA, Li XA, Wu X, Yu CX. Radiation absorbed dose distribution in a patient treated with yttrium-90 microspheres for hepatocellular carcinoma. Med Phys. 2004;31:2449–53.CrossRefGoogle Scholar
  16. 16.
    Selwyn RG, Nickles RJ, Thomadsen BR, DeWerd LA, Micka JA. A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot. 2007;65:318–27.CrossRefGoogle Scholar
  17. 17.
    van Elmbt L, Vandenberghe S, Walrand S, Pauwels S, Jamar F. Comparison of yttrium-90 quantitative imaging by TOF and non-TOF PET in a phantom of liver selective internal radiotherapy. Phys Med Biol. 2011;56:6759–77.CrossRefGoogle Scholar
  18. 18.
    Kao YH, Steinberg JD, Tay YS, Lim GK, Yan J, Townsend DW, et al. Post-radioembolization yttrium-90 PET/CT - part 2: dose-response and tumor predictive dosimetry for resin microspheres. EJNMMI Res. 2013;3:57.CrossRefGoogle Scholar
  19. 19.
    Elschot M, Vermolen BJ, Lam MG, de Keizer B, van den Bosch MA, de Jong HW. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS One. 2013;8:e55742.CrossRefGoogle Scholar
  20. 20.
    Park HC, Yu JI, Cheng JC, Zeng ZC, Hong JH, Wang ML, et al. Consensus for radiotherapy in hepatocellular carcinoma from the 5th Asia-Pacific primary liver cancer expert meeting (APPLE 2014): current practice and future clinical trials. Liver Cancer. 2016;5:162–74.CrossRefGoogle Scholar
  21. 21.
    Braat AJ, Smits ML, Braat MN, van den Hoven AF, Prince JF, de Jong HW, et al. (9)(0)Y hepatic radioembolization: an update on current practice and recent developments. J Nucl Med. 2015;56:1079–87.CrossRefGoogle Scholar
  22. 22.
    Sangro B, Carpanese L, Cianni R, Golfieri R, Gasparini D, Ezziddin S, et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology. 2011;54:868–78.CrossRefGoogle Scholar
  23. 23.
    Wang TH, Huang PI, Hu YW, Lin KH, Liu CS, Lin YY, et al. Combined Yttrium-90 microsphere selective internal radiation therapy and external beam radiotherapy in patients with hepatocellular carcinoma: from clinical aspects to dosimetry. PLoS One. 2018;13:e0190098.CrossRefGoogle Scholar

Copyright information

© Korean Society of Nuclear Medicine 2019

Authors and Affiliations

  • Ko-Han Lin
    • 1
  • Yi-Wei Chen
    • 2
  • Rheun-Chuan Lee
    • 3
  • Ling-Wei Wang
    • 2
  • Fong-In Chou
    • 4
  • Chi-Wei Chang
    • 1
  • Sang-Hue Yen
    • 2
    Email author
  • Wen-Sheng Huang
    • 1
    Email author
  1. 1.Department of Nuclear MedicineTaipei Veterans General HospitalTaipei CityRepublic of China
  2. 2.Division of Radiotherapy, Department of OncologyTaipei Veterans General HospitalTaipei CityRepublic of China
  3. 3.Department of RadiologyTaipei Veterans General HospitalTaipeiRepublic of China
  4. 4.Nuclear Science and Technology Development CenterNational Tsing-Hua UniversityHsinchuRepublic of China

Personalised recommendations