Advertisement

Translation matrix elements for spherical Gauss–Laguerre basis functions

  • Jürgen Prestin
  • Christian WülkerEmail author
Original Paper
  • 55 Downloads
Part of the following topical collections:
  1. Mathematical Problems in Medical Imaging and Earth Sciences

Abstract

Spherical Gauss–Laguerre (SGL) basis functions, i.e., normalized functions of the type \(L_{n-l-1}^{(l + 1/2)}(r^2) r^{l} Y_{lm}(\vartheta ,\varphi ), |m| \le l < n \in {\mathbb {N}}\), constitute an orthonormal polynomial basis of the space \(L^{2}\) on \({\mathbb {R}}^{3}\) with radial Gaussian weight \(\exp (-r^{2})\). We have recently described reliable fast Fourier transforms for the SGL basis functions. The main application of the SGL basis functions and our fast algorithms is in solving certain three-dimensional rigid matching problems, where the center is prioritized over the periphery. For this purpose, so-called SGL translation matrix elements are required, which describe the spectral behavior of the SGL basis functions under translations. In this paper, we derive a closed-form expression of these translation matrix elements, allowing for a direct computation of these quantities in practice.

Keywords

Spherical Gauss–Laguerre (SGL)basis functions Translation Three-dimensional rigid matching Computational harmonic analysis 

Mathematics Subject Classification

65D20 33F05 

Notes

Acknowledgements

The authors would like to thank the referees for their valuable comments. Furthermore, the authors are grateful to Sabrina Kombrink, Vitalii Myroniuk, and Nadiia Derevianko for scientific discussion and helpful comments on the manuscript.

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (10th Printing). Department of Commerce, National Bureau of Standards, Gaithersburg, MD, USA (1972)Google Scholar
  2. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  3. Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Physics: Theory and Application. Addison-Wesley, Boston (1981)zbMATHGoogle Scholar
  4. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, New York (2013)CrossRefGoogle Scholar
  5. Erdélyi, A. (ed.): Tables of Integral Transforms, vol. 2. McGraw-Hill, New York (1954)Google Scholar
  6. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere: With Applications to Geomathematics. Oxford University Press, Oxford (1998)zbMATHGoogle Scholar
  7. Levy, H., Lessman, F.: Finite Difference Equations. Dover, New York (1992)zbMATHGoogle Scholar
  8. Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics. Birkhäuser, Basel (1988)CrossRefGoogle Scholar
  9. Prestin, J., Wülker, C.: Fast Fourier transforms for spherical Gauss–Laguerre basis functions. In: Pesenson, I., Le Gia, Q.T., Mayeli, A., Mhaskar, H., Zhou, D.-X. (Eds.) Novel Methods in Harmonic Analysis, Vol. 1, Applied and Numerical Harmonic Analysis, pp. 237–263. Birkhäuser, Basel (2017)Google Scholar
  10. Ritchie, D.W.: High-order analytic translation matrix elements for real-space six-dimensional polar Fourier correlations. J. Appl. Cryst. 38(5), 808–818 (2005)CrossRefGoogle Scholar
  11. Ritchie, D.W., Kemp, G.J.L.: Protein docking using spherical polar Fourier correlations. Proteins 39(2), 178–194 (2000)CrossRefGoogle Scholar
  12. Ritchie, D.W., Kozakov, D., Vajda, S.: Accelerating and focusing protein–protein docking correlations using multi-dimensional rotational FFT generating functions. Bioinformatics 24(17), 1865–1873 (2008)CrossRefGoogle Scholar
  13. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  14. Wülker, C.: Schnelle Fourier-Transformationen für sphärische Gauß-Laguerresche Basisfunktionen. Dissertation, University of Lübeck, Germany (2018)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of LübeckLübeckGermany
  2. 2.Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations