Advertisement

Flow and transport in fractured poroelastic media

  • Ilona Ambartsumyan
  • Eldar Khattatov
  • Truong Nguyen
  • Ivan YotovEmail author
Original Paper
  • 17 Downloads
Part of the following topical collections:
  1. Numerical methods for processes in fractured porous media

Abstract

We study flow and transport in fractured poroelastic media using Stokes flow in the fractures and the Biot model in the porous media. The Stokes–Biot model is coupled with an advection–diffusion equation for modeling transport of chemical species within the fluid. The continuity of flux on the fracture-matrix interfaces is imposed via a Lagrange multiplier. The coupled system is discretized by a finite element method using Stokes elements, mixed Darcy elements, conforming displacement elements, and discontinuous Galerkin for transport. The stability and convergence of the coupled scheme are analyzed. Computational results verifying the theory as well as simulations of flow and transport in fractured poroelastic media are presented.

Keywords

Fluid-poroelastic structure interaction Stokes-Biot model Coupled flow and transport Fractured poroelastic media 

Mathematics Subject Classification

76S05 76D07 74F10 65M60 65M12 

Notes

References

  1. Acosta, G., Apel, T., Durán, R., Lombardi, A.: Error estimates for Raviart–Thomas interpolation of any order on anisotropic tetrahedra. Math. Comput. 80(273), 141–163 (2011)MathSciNetzbMATHGoogle Scholar
  2. Aizinger, V., Dawson, C.N., Cockburn, B., Castillo, P.: The local discontinuous Galerkin method for contaminant transport. Adv. Water Resour. 24, 73–87 (2000)zbMATHGoogle Scholar
  3. Ambartsumyan, I., Ervin, V.J., Nguyen, T., Yotov, I.: A nonlinear Stokes–Biot model for the interaction of a non-Newtonian fluid with poroelastic media I: well-posedness of the model. arXiv:1803.00947 (2018a)
  4. Ambartsumyan, I., Khattatov, E., Yotov, I., Zunino, P.: A Lagrange multiplier method for a Stokes–Biot fluid-poroelastic structure interaction model. Numer. Math. 140(2), 513–553 (2018b)MathSciNetzbMATHGoogle Scholar
  5. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001/02)Google Scholar
  6. Badia, S., Quaini, A., Quarteroni, A.: Coupling Biot and Navier–Stokes equations for modelling fluid-poroelastic media interaction. J. Comput. Phys. 228(21), 7986–8014 (2009)MathSciNetzbMATHGoogle Scholar
  7. Bazilevs, Y., Takizawa, K., Tezduyar, T.E.: Computational Fluid–Structure Interaction: Methods and Applications. Wiley, New York (2013)zbMATHGoogle Scholar
  8. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30(1), 197–207 (1967)Google Scholar
  9. Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)zbMATHGoogle Scholar
  10. Boffi, D., Brezzi, F., Fortin, M., et al.: Mixed Finite Element Methods and Applications, vol. 44. Springer, Berlin (2013)zbMATHGoogle Scholar
  11. Boon, W.M., Nordbotten, J.M., Yotov, I.: Robust discretization of flow in fractured porous media. SIAM J. Numer. Anal. 56(4), 2203–2233 (2018)MathSciNetzbMATHGoogle Scholar
  12. Both, J., Kumar, K., Nordbotten, J.M., Radu, F.A.: Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media. Comput. Math. Appl.  https://doi.org/10.1016/j.camwa.2018.07.033 (2018)
  13. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \({H}^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)MathSciNetzbMATHGoogle Scholar
  14. Bukac, M., Yotov, I., Zakerzadeh, R., Zunino, P.: Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput. Methods Appl. Mech. Eng. 292, 138–170 (2015)MathSciNetGoogle Scholar
  15. Bukac, M., Yotov, I., Zunino, P.: An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Partial Differ. Equ. 31(4), 1054–1100 (2015)MathSciNetzbMATHGoogle Scholar
  16. Bukac, M., Yotov, I., Zunino, P.: Dimensional model reduction for flow through fractures in poroelastic media. ESAIM Math. Model. Numer. Anal. 51(4), 1429–1471 (2017)MathSciNetzbMATHGoogle Scholar
  17. Bungartz, H.-J., Schäfer, M.: Fluid–Structure Interaction: Modelling, Simulation, Optimisation, vol. 53. Springer, Berlin (2006)zbMATHGoogle Scholar
  18. Ciarlet, P.: The finite element method for elliptic problems. Class. Appl. Math. 40, 1–511 (2002)MathSciNetGoogle Scholar
  19. Cockburn, B., Dawson, C.: Approximation of the velocity by coupling discontinuous Galerkin and mixed finite element methods for flow problems. Comput. Geosci. 6(3–4), 505–522 (2002). Locally conservative numerical methods for flow in porous mediaMathSciNetzbMATHGoogle Scholar
  20. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)MathSciNetzbMATHGoogle Scholar
  21. D’Angelo, C., Scotti, A.: A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM Math. Model. Numer. Anal. 46(2), 465–489 (2012)zbMATHGoogle Scholar
  22. Dawson, C.: Conservative, shock-capturing transport methods with nonconservative velocity approximations. Comput. Geosci. 3(3–4), 205–227 (1999)MathSciNetzbMATHGoogle Scholar
  23. Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193(23–26), 2565–2580 (2004)MathSciNetzbMATHGoogle Scholar
  24. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1–2), 57–74 (2002)MathSciNetzbMATHGoogle Scholar
  25. Flemisch, B., Berre, I., Boon, W., Fumagalli, A., Schwenck, N., Scotti, A., Stefansson, I., Tatomir, A.: Benchmarks for single-phase flow in fractured porous media. Adv. Water Res. 111, 239–258 (2018)Google Scholar
  26. Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, vol. 1. Springer, Berlin (2010)zbMATHGoogle Scholar
  27. Frih, N., Roberts, J.E., Saada, A.: Modeling fractures as interfaces: a model for Forchheimer fractures. Comput. Geosci. 12(1), 91–104 (2008)MathSciNetzbMATHGoogle Scholar
  28. Frih, N., Martin, V., Roberts, J.E., Saada, A.: Modeling fractures as interfaces with nonmatching grids. Comput. Geosci. 16(4), 1043–1060 (2012)Google Scholar
  29. Fumagalli, A., Scotti, A.: A reduced model for flow and transport in fractured porous media with non-matching grids. In: Numerical Mathematics and Advanced Applications 2011, pp. 499–507. Springer, Heidelberg (2013)Google Scholar
  30. Fumagalli, A., Scotti, A.: Numerical modelling of multiphase subsurface flow in the presence of fractures. Commun. Appl. Ind. Math. 3(1), e–380, 23 (2012)Google Scholar
  31. Galdi, G.P., Rannacher, R. (eds.): Fundamental Trends in Fluid–Structure Interaction. Contemporary Challenges in Mathematical Fluid Dynamics and Its Applications, vol. 1. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2010)Google Scholar
  32. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26(20), 07 (2007)MathSciNetzbMATHGoogle Scholar
  33. Ganis, B., Mear, M.E., Sakhaee-Pour, A., Wheeler, M.F., Wick, T.: Modeling fluid injection in fractures with a reservoir simulator coupled to a boundary element method. Comput. Geosci. 18(5), 613–624 (2014)MathSciNetzbMATHGoogle Scholar
  34. Girault, V., Rivière, B.: DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal. 47(3), 2052–2089 (2009)MathSciNetzbMATHGoogle Scholar
  35. Girault, V., Wheeler, M.F., Ganis, B., Mear, M.E.: A lubrication fracture model in a poro-elastic medium. Math. Models Methods Appl. Sci. 25(4), 587–645 (2015)MathSciNetzbMATHGoogle Scholar
  36. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)MathSciNetzbMATHGoogle Scholar
  37. Kim, J., Tchelepi, H.A., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: drained and undrained splits. Comput. Methods Appl. Mech. Eng. 200(23–24), 2094–2116 (2011a)MathSciNetzbMATHGoogle Scholar
  38. Kim, J., Tchelepi, H.A., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput. Methods Appl. Mech. Eng. 200(13–16), 1591–1606 (2011b)MathSciNetzbMATHGoogle Scholar
  39. Kovacik, J.: Correlation between Young’s modulus and porosity in porous materials. J. Mater. Sci. Lett. 18(13), 1007–1010 (1999)Google Scholar
  40. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2003)MathSciNetzbMATHGoogle Scholar
  41. Lee, S., Mikelić, A., Wheeler, M.F., Wick, T.: Phase-field modeling of proppant-filled fractures in a poroelastic medium. Comput. Methods Appl. Mech. Eng. 312, 509–541 (2016a)MathSciNetGoogle Scholar
  42. Lee, S., Wheeler, M.F., Wick, T.: Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. Comput. Methods Appl. Mech. Eng. 305, 111–132 (2016b)MathSciNetGoogle Scholar
  43. Lesinigo, M., D’Angelo, C., Quarteroni, A.: A multiscale Darcy–Brinkman model for fluid flow in fractured porous media. Numer. Math. 117(4), 717–752 (2011)MathSciNetzbMATHGoogle Scholar
  44. Martin, V., Jaffre, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)MathSciNetzbMATHGoogle Scholar
  45. Mikelić, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17(3), 455–461 (2013)MathSciNetzbMATHGoogle Scholar
  46. Mikelić, A., Wheeler, M.F., Wick, T.: Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput. Geosci. 19(6), 1171–1195 (2015)MathSciNetzbMATHGoogle Scholar
  47. Morales, F.A., Showalter, R.E.: The narrow fracture approximation by channeled flow. J. Math. Anal. Appl. 365(1), 320–331 (2010)MathSciNetzbMATHGoogle Scholar
  48. Morales, F.A., Showalter, R.E.: A Darcy–Brinkman model of fractures in porous media. J. Math. Anal. Appl. 452(2), 1332–1358 (2017)MathSciNetzbMATHGoogle Scholar
  49. Oden, J.T., Babuska, I., Baumann, C.E.: A discontinuous \(hp\) finite element method for diffusion problems. J. Comput. Phys. 146(2), 491–519 (1998)MathSciNetzbMATHGoogle Scholar
  50. Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation. Elsevier, Amsterdam (1977)Google Scholar
  51. Radu, F.A., Pop, I.S., Attinger, S.: Analysis of an Euler implicit-mixed finite element scheme for reactive solute transport in porous media. Numer. Methods Partial Differ. Equ. 26(2), 320–344 (2010)MathSciNetzbMATHGoogle Scholar
  52. Richter, T.: Fluid–Structure Interactions: Models, Analysis and Finite Elements, vol. 118. Springer, Berlin (2017)zbMATHGoogle Scholar
  53. Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42(5), 1959–1977 (2005)MathSciNetzbMATHGoogle Scholar
  54. Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I. Comput. Geosci. 3(3–4), 337–360 (1999)MathSciNetzbMATHGoogle Scholar
  55. Saffman, P.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50(2), 93–101 (1971)zbMATHGoogle Scholar
  56. Scott, R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)MathSciNetzbMATHGoogle Scholar
  57. Showalter, R.E.: Poroelastic filtration coupled to Stokes flow. In: Control Theory of Partial Differential Equations, vol. 242. Lecture Notes in Pure and Applied Mathematics, pp. 229–241. Chapman & Hall/CRC, Boca Raton, FL (2005)Google Scholar
  58. Sun, S., Rivière, B., Wheeler, M.F.: A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media. In: Recent Progress in Computational and Applied PDEs (Zhangjiajie, 2001), pp. 323–351. Kluwer/Plenum, New York (2002)Google Scholar
  59. Sun, S., Wheeler, M.F.: Discontinuous Galerkin methods for coupled flow and reactive transport problems. Appl. Numer. Math. 52(2–3), 273–298 (2005a)MathSciNetzbMATHGoogle Scholar
  60. Sun, S., Wheeler, M.F.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43(1), 195–219 (2005b)MathSciNetzbMATHGoogle Scholar
  61. Vassilev, D., Yotov, I.: Coupling Stokes–Darcy flow with transport. SIAM J. Sci. Comput. 31(5), 3661–3684 (2009)MathSciNetzbMATHGoogle Scholar
  62. Vassilev, D., Wang, C., Yotov, I.: Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 268, 264–283 (2014)MathSciNetzbMATHGoogle Scholar
  63. Wheeler, M.F., Darlow, B.L.: Interior penalty Galerkin procedures for miscible displacement problems in porous media. In: Computational Methods in Nonlinear Mechanics (Proceedings of Second International Conference, University of Texas, Austin, TX, 1979), pp. 485–506. North-Holland, Amsterdam-New York (1980)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PittsburghPittsburghUSA

Personalised recommendations