Two-phase Discrete Fracture Matrix models with linear and nonlinear transmission conditions

  • Joubine Aghili
  • Konstantin BrennerEmail author
  • Julian Hennicker
  • Roland Masson
  • Laurent Trenty
Original Paper
Part of the following topical collections:
  1. Numerical methods for processes in fractured porous media


This work deals with two-phase Discrete Fracture Matrix models coupling the two-phase Darcy flow in the matrix domain to the two-phase Darcy flow in the network of fractures represented as co-dimension one surfaces. Two classes of such hybrid-dimensional models are investigated either based on nonlinear or linear transmission conditions at the matrix–fracture interfaces. The linear transmission conditions include the cell-centred upwind approximation of the phase mobilities classically used in the porous media flow community as well as a basic extension of the continuous phase pressure model accounting for fractures acting as drains. The nonlinear transmission conditions at the matrix–fracture interfaces are based on the normal flux continuity equation for each phase using additional interface phase pressure unknowns. They are compared both in terms of accuracy and numerical efficiency to a reference equi-dimensional model for which the fractures are represented as full-dimensional subdomains. The discretization focuses on Finite Volume cell-centred Two-Point Flux Approximation which is combined with a local nonlinear solver allowing to eliminate efficiently the additional matrix–fracture interfacial unknowns together with the nonlinear transmission conditions. 2D numerical experiments illustrate the better accuracy provided by the nonlinear transmission conditions compared to their linear approximations with a moderate computational overhead obtained thanks to the local nonlinear elimination at the matrix–fracture interfaces. The numerical section is complemented by a comparison of the reduced models on a 3D test case using the Vertex Approximate Gradient scheme.


Two-phase Darcy flow Discrete fracture network Discrete fracture matrix model Nonlinear transmission condition Finite volume discretization 

Mathematics Subject Classification

65M08 65N08 76S05 



  1. Aghili, J., Brenner, K., Hennicker, J., Masson, R., Trenty, L.: Hybrid finite volume discretization of two-phase Discrete Fracture Matrix models with nonlinear interface solver. In: ECMOR XVI—16th European Conference on the Mathematics of Oil Recovery, Barcelona, France (2018)
  2. Alboin, C., Jaffré, J., Roberts, J., Serres, C.: Modeling fractures as interfaces for flow and transport in porous media. Fluid Flow Transport Porous Med. 295, 13–24 (2002)MathSciNetCrossRefGoogle Scholar
  3. Ahmed, R., Edwards, M.G., Lamine, S., Huisman, B.A.H.: Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model. J. Comput. Phys. 284, 462–489 (2015)MathSciNetCrossRefGoogle Scholar
  4. Ahmed, E., Jaffré, J., Roberts, J.E.: A reduced fracture model for two-phase flow with different rock types. Math. Comput. Simul. 7, 49–70 (2017)MathSciNetCrossRefGoogle Scholar
  5. Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modeling of flows in fractured porous media. Math. Model. Numer Anal 43(2), 239–275 (2009)MathSciNetCrossRefGoogle Scholar
  6. Bentsen, R.G., Anli, J.: Using parameter estimation techniques to convert centrifuge data into a capillary-pressure curve. SPE J. 17(1), 57–64 (1977)Google Scholar
  7. Bogdanov, I., Mourzenko, V., Thovert, J.-F., Adler, P.M.: Two-phase flow through fractured porous media. Phys. Rev. E 68, 026703 (2003)MathSciNetCrossRefGoogle Scholar
  8. Brenner, K., Groza, M., Guichard, C., Masson, R.: Vertex approximate gradient scheme for hybrid-dimensional two-phase Darcy flows in fractured porous media. ESAIM Math. Model. Numer. Anal. 49, 303–330 (2015)MathSciNetCrossRefGoogle Scholar
  9. Brenner, K., Hennicker, J., Masson, R., Samier, P.: Gradient discretization of hybrid-dimensional Darcy flow in fractured porous media with discontinuous pressures at matrix–fracture interfaces. IMA J. Numer. Anal. 37(3), 1551–1585 (2016a)MathSciNetzbMATHGoogle Scholar
  10. Brenner, K., Groza, M., Guichard, C., Lebeau, G., Masson, R.: Gradient discretization of hybrid-dimensional Darcy flows in fractured porous media. Numerische Mathematik 134(3), 569–609 (2016b)MathSciNetCrossRefGoogle Scholar
  11. Brenner, K., Groza, M., Jeannin, L., Masson, R., Pellerin, J.: Immiscible two-phase Darcy flow model accounting for vanishing and discontinuous capillary pressures: application to the flow in fractured porous media. Comput. Geosci. 21, 5–6 (2017)MathSciNetCrossRefGoogle Scholar
  12. Brenner, K., Hennicker, J., Masson, R., Samier, P.: Hybrid-dimensional modeling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions. J. Comput. Phys. 357, 100–124 (2018)MathSciNetCrossRefGoogle Scholar
  13. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media and their relation to drainage design. Trans. ASAE 7(1), 0026–0028 (1964)CrossRefGoogle Scholar
  14. Droniou, J., Hennicker, J., Masson, R.: Numerical analysis of a two-phase flow discrete fracture model. Numerische Mathematik (2018).
  15. Eymard, R., Gallouët, T., Guichard, C., Herbin, R., Masson, R.: TP or not TP, that is the question. Comput. Geosci. 18, 285–296 (2014)MathSciNetCrossRefGoogle Scholar
  16. Flauraud, E., Nataf, F., Faille, I., Masson, R.: Domain decomposition for an asymptotic geological fault modeling. C. R. à l’Académie des Sciences, Mécanique 331, 849–855 (2003)CrossRefGoogle Scholar
  17. Flemisch, B., Berre, I., Boon, W., Fumagalli, A., Schwenck, N., Scotti, A., Stefansson, I., Tatomir, A.: Benchmarks for single-phase flow in fractured porous media. Adv. Water Resour. 111, 239–258 (2018)CrossRefGoogle Scholar
  18. Hoteit, H., Firoozabadi, A.: Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures. Adv. Water Resour. 31, 56–73 (2008)CrossRefGoogle Scholar
  19. Jaffré, J., Martin, V., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)MathSciNetCrossRefGoogle Scholar
  20. Jaffré, J., Mnejja, M., Roberts, J.E.: A discrete fracture model for two-phase flow with matrix–fracture interaction. Procedia Comput. Sci. 4, 967–973 (2011)CrossRefGoogle Scholar
  21. Karimi-Fard, M., Durlovski, L.J., Aziz, K.: An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9, 227–236 (2004)CrossRefGoogle Scholar
  22. Lacroix, S., Vassilevski, Y.V., Wheeler, M.F.: Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS). Numer. Linear Algebra Appl. 8, 537–549 (2001)MathSciNetCrossRefGoogle Scholar
  23. Monteagudo, J.E.P., Firoozabadi, A.: Control-volume model for simulation of water injection in fractured media: incorporating matrix heterogeneity and reservoir wettability effects. SPE J. 12, 3 (2007)CrossRefGoogle Scholar
  24. Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12, 513–522 (1976)CrossRefGoogle Scholar
  25. Reichenberger, V., Jakobs, H., Bastian, P., Helmig, R.: A mixed-dimensional finite volume method for multiphase flow in fractured porous media. Adv. Water Resour. 29(7), 1020–1036 (2006)CrossRefGoogle Scholar
  26. Scheichl, R., Masson, R., Wendebourg, J.: Decoupling and block preconditioning for sedimentary basin simulations. Comput. Geosci. 7, 295–318 (2003)MathSciNetCrossRefGoogle Scholar
  27. Sandve, T.H., Berre, I., Nordbotten, J.M.: An efficient multi-point flux approximation method for Discrete Fracture–Matrix simulations. JCP 231, 3784–3800 (2012)MathSciNetCrossRefGoogle Scholar
  28. Tunc, X., Faille, I., Gallouët, T., Cacas, M.C., Havé, P.: A model for conductive faults with non matching grids. Comput. Geosciences 16, 277–296 (2012)CrossRefGoogle Scholar
  29. Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Joubine Aghili
    • 1
    • 2
  • Konstantin Brenner
    • 1
    • 2
    Email author
  • Julian Hennicker
    • 3
  • Roland Masson
    • 1
    • 2
  • Laurent Trenty
    • 4
  1. 1.Team COFFEEInria Sophia Antipolis - MéditerranéeValbonneFrance
  2. 2.Laboratoire J.A. Dieudonné, UMR 7351 CNRSUniversité Côte d’AzurNiceFrance
  3. 3.Université de GenèveGenevaSwitzerland
  4. 4.AndraChatenay-MalabryFrance

Personalised recommendations