Advertisement

Mathematical analysis, finite element approximation and numerical solvers for the interaction of 3D reservoirs with 1D wells

  • Daniele Cerroni
  • Federica Laurino
  • Paolo ZuninoEmail author
Original Paper
  • 26 Downloads
Part of the following topical collections:
  1. Numerical methods for processes in fractured porous media

Abstract

We develop a mathematical model for the interaction of a three-dimensional reservoir with the flow through wells, namely narrow cylindrical channels cutting across the reservoir. Leak off or sink effects are taken into account. To enable the simulation of complex configurations featuring multiple wells, we apply a model reduction technique that represents the wells as one-dimensional channels. The challenge in this case is to account for the interaction of the reservoir with the embedded one-dimensional wells. The resulting problem consists of coupled partial differential equations defined on manifolds with heterogeneous dimensionality. The existence and regularity of weak solutions of such problem is thoroughly addressed. Afterwards, we focus on the numerical discretization of the problem in the framework of the finite element method. We notice that the numerical scheme does not require conformity between the computational mesh of the reservoir and the one of the wells. From the standpoint of the solvers, we discuss the application of multilevel algorithms, such as the algebraic multigrid method. Finally, the reduced mathematical model and the discretization method is applied to a few configurations of reservoir with wells, with the purpose of verifying the theoretical properties and to assess the generality of the approach.

Keywords

Perforated reservoirs Dimensional model reduction Finite elements Multigrid solvers 

Mathematics Subject Classification

35J47 35Q35 35Q86 58J05 76S05 65N30 

Notes

Acknowledgements

The author names are listed in alphabetical order. All the authors are members of the INdAM Research group GNCS. The author Federica Laurino acknowledges the support of the Italian Institute of Technology with the fellowship: Sviluppo di metodi computazionali di tipo multi-scala per la simulazione del trasporto vascolare ed extra vascolare di molecole, nano-costrutti e cellule in tessuti neoplastici.

References

  1. Bellout, M., Echeverra Ciaurri, D., Durlofsky, L., Foss, B., Kleppe, J.: Joint optimization of oil well placement and controls. Comput. Geosci. 16(4), 1061–1079 (2012).  https://doi.org/10.1007/s10596-012-9303-5 CrossRefGoogle Scholar
  2. Boon, W., Nordbotten, J., Vatne, J.: Mixed-Dimensional Elliptic Partial Differential Equations. Tech. rep., arXiv, Cornell University Library (2017). arXiv:1710.00556v2
  3. Cattaneo, L., Zunino, P.: A computational model of drug delivery through microcirculation to compare different tumor treatments. Int. J. Numer. Methods Biomed. Eng. 30(11), 1347–1371 (2014a).  https://doi.org/10.1002/cnm.2661 MathSciNetCrossRefGoogle Scholar
  4. Cattaneo, L., Zunino, P.: Computational models for fluid exchange between microcirculation and tissue interstitium. Netw. Heterog. Media 9(1), 135–159 (2014b).  https://doi.org/10.3934/nhm.2014.9.135 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Chen, Z., Yue, X.: Numerical homogenization of well singularities in the flow transport through heterogeneous porous media. Multiscale Model. Simul. 1(2), 260–303 (2003).  https://doi.org/10.1137/S1540345902413322 MathSciNetCrossRefzbMATHGoogle Scholar
  6. D’Angelo, C.: Multi Scale Modelling of Metabolism and Transport Phenomena in Living Tissues, PhD Thesis. EPFL, Lausanne (2007)Google Scholar
  7. D’Angelo, C.: Finite element approximation of elliptic problems with dirac measure terms in weighted spaces: applications to one- and three-dimensional coupled problems. SIAM J. Numer. Anal. 50(1), 194–215 (2012).  https://doi.org/10.1137/100813853 MathSciNetCrossRefzbMATHGoogle Scholar
  8. D’Angelo, C., Quarteroni, A.: On the coupling of 1d and 3d diffusion–reaction equations. Application to tissue perfusion problems. Math. Models Methods Appl. Sci. 18(8), 1481–1504 (2008).  https://doi.org/10.1142/S0218202508003108 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159. Springer, New York (2004).  https://doi.org/10.1007/978-1-4757-4355-5
  10. Fernández Bonder, J., Rossi, J.: Asymptotic behavior of the best sobolev trace constant in expanding and contracting domains. Comm. Pure Appl. Anal. 1, 359–378 (2002).  https://doi.org/10.3934/cpaa.2002.1.359 MathSciNetCrossRefzbMATHGoogle Scholar
  11. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, vol. 224. Springer, Berlin (2001)zbMATHGoogle Scholar
  12. Jenny, P., Lunati, I.: Modeling complex wells with the multi-scale finite-volume method. J. Comput. Phys. 228(3), 687–702 (2009).  https://doi.org/10.1016/j.jcp.2008.09.026 MathSciNetCrossRefzbMATHGoogle Scholar
  13. Koeppl, T., Vidotto, E., Wohlmuth, B., Zunino, P.: Mathematical modelling, analysis and numerical approximation of second order elliptic problems with inclusions. Math. Models Methods Appl. Sci. 28(5), 953–978 (2018)MathSciNetCrossRefGoogle Scholar
  14. Köppl, T., Wohlmuth, B.: Optimal a priori error estimates for an elliptic problem with dirac right-hand side. SIAM J. Numer. Anal. 52(4), 1753–1769 (2014)MathSciNetCrossRefGoogle Scholar
  15. Köppl, T., Vidotto, E., Wohlmuth, B.: A local error estimate for the Poisson equation with a line source term. In: Numerical Mathematics and Advanced Applications ENUMATH 2015, pp. 421–429. Springer, Berlin (2016)Google Scholar
  16. Kuchta, M., Nordaas, M., Verschaeve, J., Mortensen, M., Mardal, K.A.: Preconditioners for saddle point systems with trace constraints coupling 2d and 1d domains. SIAM J. Sci. Comput. 38(6), B962–B987 (2016).  https://doi.org/10.1137/15M1052822 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Lee, K.S.: Efficiency of horizontal and vertical well patterns on the performance of micellar-polymer flooding. Energy Procedia 16, 889–894 (2012)CrossRefGoogle Scholar
  18. Nabil, M., Zunino, P.: A computational study of cancer hyperthermia based on vascular magnetic nanoconstructs. R. Soc. Open Sci. (2016).  https://doi.org/10.1098/rsos.160287
  19. Nabil, M., Decuzzi, P., Zunino, P.: Modelling mass and heat transfer in nano-based cancer hyperthermia. R. Soc. Open Sci. (2015).  https://doi.org/10.1098/rsos.150447
  20. Notaro, D., Cattaneo, L., Formaggia, L., Scotti, A., Zunino, P.: A Mixed Finite Element Method for Modeling the Fluid Exchange Between Microcirculation and Tissue Interstitium, pp. 3–25. Springer, Berlin (2016).  https://doi.org/10.1007/978-3-319-41246-7-1
  21. Olshanskii, M., Reusken, A.: On the convergence of a multigrid method for linear reaction–diffusion problems. Computing 65(3), 193–202 (2000)MathSciNetCrossRefGoogle Scholar
  22. Peaceman, D.: Interpretation of well-block pressures in numerical reservoir simulation. Soc. Pet. Eng. AIME J. 18(3), 183–194 (1978)CrossRefGoogle Scholar
  23. Peaceman, D.W.: Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability. Soc. Pet. Eng. J. 23(3), 531–543 (1983).  https://doi.org/10.2118/10528-PA CrossRefGoogle Scholar
  24. Peaceman, D.: Interpretation of Well-Block Pressures in Numerical Reservoir Simulation—Part 3: Some Additional Well Geometries, pp. 457–471 (1987)Google Scholar
  25. Possenti, L., di Gregorio, S., Gerosa, F., et al.: A computational model for microcirculation including Fahraeus–Lindqvist effect, plasma skimming and fluid exchange with the tissue interstitium. Int J Numer Meth Biomed Engng. (2018).  https://doi.org/10.1002/cnm.3165
  26. Possenti, L., Casagrande, G., Di Gregorio, S., Zunino, P., Costantino, M.L.: Numerical simulations of the microvascular fluid balance with a non-linear model of the lymphatic system. Microvasc. Res. 122, 101–110 (2019).  https://doi.org/10.1016/j.mvr.2018.11.003 CrossRefGoogle Scholar
  27. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, vol. 23. Springer, Berlin (1994)Google Scholar
  28. Salsa, S.: Partial Differential Equations in Action, Unitext, vol. 99, 3rd edn. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31238-5. From modelling to theory, La Matematica per il 3+2
  29. Schatz, A.H., Wahlbin, L.B.: On the finite element method for singularly perturbed reaction–diffusion problems in two and one dimensions. Math. Comp. 40(161), 47–89 (1983)MathSciNetCrossRefGoogle Scholar
  30. Stüben, K.: Algebraic multigrid (AMG): experiences and comparisons. Appl. Math. Comput. 13(3–4), 419–451 (1983).  https://doi.org/10.1016/0096-3003(83)90023-1 MathSciNetCrossRefzbMATHGoogle Scholar
  31. Stüben, K.: Algebraic Multigrid (AMG): An Introduction with Applications; Updated Version of GMD Report No 53. GMD-Report. GMD-Forschungszentrum Informationstechnik (1999)Google Scholar
  32. Stüben, K., Clees, T., Klie, H., Lu, B., Wheeler, M.: Algebraic Multigrid Methods (AMG) for the Efficient Solution of Fully Implicit Formulations in Reservoir Simulation, pp. 59–69 (2007)Google Scholar
  33. Wolfsteiner, C., Lee, S., Tchelepi, H.: Well modeling in the multiscale finite volume method for subsurface flow simulation. Multiscale Model. Simul. 5(3), 900–917 (2006).  https://doi.org/10.1137/050640771 MathSciNetCrossRefzbMATHGoogle Scholar
  34. Wu, Y.S.: A virtual node method for handling well bore boundary conditions in modeling multiphase flow in porous and fractured media. Water Resour. Res. 36(3), 807–814 (2000).  https://doi.org/10.1029/1999WR900336 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MOX, Department of MathematicsPolitecnico di MilanoMilanItaly
  2. 2.Istituto Italiano di TecnologiaGenoaItaly

Personalised recommendations