Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium

• A. Mikelić
• M. F. Wheeler
• T. Wick
Original Paper
Part of the following topical collections:
1. Numerical methods for processes in fractured porous media

Abstract

We study the propagation of hydraulic fractures using the fixed stress splitting method. The phase field approach is applied and we study the mechanics step involving displacement and phase field unknowns, with a given pressure. We present a detailed derivation of an incremental formulation of the phase field model for a hydraulic fracture in a poroelastic medium. The mathematical model represents a linear elasticity system with fading elastic moduli as the crack grows that is coupled with an elliptic variational inequality for the phase field variable. The convex constraint of the variational inequality assures the irreversibility and entropy compatibility of the crack formation. We establish existence of a minimizer of an energy functional of an incremental problem and convergence of a finite dimensional approximation. Moreover, we prove that the fracture remains small in the third direction in comparison to the first two principal directions. Computational results of benchmark problems are provided that demonstrate the effectiveness of this approach in treating fracture propagation. Another novelty is the treatment of the mechanics equation with mixed boundary conditions of Dirichlet and Neumann types. We finally notice that the corresponding pressure step was studied by the authors in Mikelić et al. (SIAM Multiscale Model Simul 13(1):367–398, 2015a).

Keywords

Hydraulic fracturing Phase field formulation Nonlinear elliptic system Computer simulations Poroelasticity

Mathematics Subject Classification

35Q74 35J87 49J45 65K15 74R10

References

1. Adachi, J., Siebrits, E., Peirce, A., Desroches, J.: Computer simulation of hydraulic fractures. Int. J. Rock Mech. Min. Sci. 44, 739–757 (2007)Google Scholar
2. Almani, T., Lee, S., Wheeler, M., Wick, T.: Multirate coupling forflow and geomechanics applied to hydraulic fracturing using anadaptive phase-field technique (2017). SPE RSC 182610-MS, Feb. 2017, Montgomery, Texas, USAGoogle Scholar
3. Almi, S., Maso, G.D., Toader, R.: Quasi-static crack growth in hydraulic fracture. Nonlinear Anal. Theory Methods Appl. 109, 301–318 (2014)
4. Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier, M., Pelteret, J.P., Turcksin, B., Wells, D.: The deal.II library, version 8.5. J. Numer. Math. 25(3), 137–146 (2017)
5. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)
6. Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J.R., Landis, C.M.: A phase-field description of dynamic brittle fracture. Comput. Meth. Appl. Mech. Eng. 217, 77–95 (2012)
7. de Borst, R., Rethoré, J., Abellan, M.: A numerical approach for arbitrary cracks in a fluid-saturated porous medium. Arch. Appl. Mech. 595–606 (2006)Google Scholar
8. Both, J., Borregales, M., Nordbotten, J., Kumar, K., Radu, F.: Robust fixed stress splitting for biots equations in heterogeneous media. Appl. Math. Lett. 68, 101–108 (2017)
9. Bourdin, B.: Image segmentation with a finite element method. Math. Model. Numer. Anal. 33(2), 229–244 (1999)
10. Bourdin, B., Chukwudozie, C., Yoshioka, K.: A variational approach to the numerical simulation of hydraulic fracturing. In: SPE Journal, Conference Paper 159154-MS (2012)Google Scholar
11. Bourdin, B., Francfort, G., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)
12. Bourdin, B., Francfort, G., Marigo, J.J.: The variational approach to fracture. J. Elast. 91(1–3), 1–148 (2008)
13. Braides, A.: Approximation of Free-Discontinuity Problems. Springer, Berlin (1998)
14. Burke, S., Ortner, C., Süli, E.: An adaptive finite element approximation of a variational model of brittle fracture. SIAM J. Numer. Anal. 48(3), 980–1012 (2010)
15. Cajuhi, T., Sanavia, L., De Lorenzis, L.: Phase-field modeling of fracture in variably saturated porous media. Comput. Mech. 61(3), 299–318 (2018)
16. Castelletto, N., White, J.A., Tchelepi, H.A.: Accuracy and convergence properties of the fixedstress iterative solution of twoway coupled poromechanics. Int. J. Numer. Anal. Methods Geomech. 39(14), 1593–1618 (2015)Google Scholar
17. Castonguay, S., Mear, M., Dean, R., Schmidt, J.: Predictions of the growth of multiple interacting hydraulic fractures in three dimensions. SPE-166259-MS pp. 1–12 (2013)Google Scholar
18. Chambolle, A.: An approximation result for special functions with bounded variations. J. Math. Pures Appl. 83, 929–954 (2004)
19. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, 2 edn. North-Holland, Amsterdam (1987)Google Scholar
20. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer Verlag, Berlin (2008)
21. Dean, R., Schmidt, J.: Hydraulic-fracture predictions with a fully coupled reservoir simulator. SPE J. 14(4), 707–714 (2014)Google Scholar
22. Engwer, C., Schumacher, L.: A phase field approach to pressurized fractures using discontinuous Galerkin methods. Math. Comput. Simul. 137, 266–285 (2017)
23. Ferronato, M., Castelletto, N., Gambolati, G.: A fully coupled 3-d mixed finite element model of Biot consolidation. J. Comput. Phys. 229(12), 4813–4830 (2010)
24. Francfort, G.: Un résumé de la théorie variationnelle de la rupture (2011). Séminaire Laurent Schwartz – EDP et applications, Institut des hautes études scientifiques, 2011–2012, Exposé no. XXII, 1-11. http://slsedp.cedram.org/slsedp-bin/fitem?id=SLSEDP_2011-2012
25. Francfort, G., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)
26. Ganis, B., Girault, V., Mear, M., Singh, G., Wheeler, M.F.: Modeling fractures in a poro-elastic medium. Oil Gas Sci. Technol. 4, 515–528 (2014)Google Scholar
27. Gaspar, F.J., Rodrigo, C.: On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics. Comput. Methods Appl. Mech. Eng. 326, 526–540 (2017)
28. Gerasimov, T., Lorenzis, L.D.: A line search assisted monolithic approach for phase-field computing of brittle fracture. Comput. Methods Appl. Mech. Eng. 312, 276–303 (2016)
29. Girault, V., Wheeler, M.F., Ganis, B., Mear, M.E.: A lubrication fracture model in a poro-elastic medium. Math. Models Methods Appl. Sci. 25(04), 587–645 (2015)
30. Gupta, P., Duarte, C.: Simulation of non-planar three-dimensional hydraulic fracture propagation. Int. J. Numer. Anal. Meth. Geomech. 38, 1397–1430 (2014)Google Scholar
31. Heider, Y., Markert, B.: A phase-field modeling approach of hydraulic fracture in saturated porous media. Mech. Res. Commun. 80, 38–46 (2017)Google Scholar
32. Heister, T., Wheeler, M.F., Wick, T.: A primal-dual active set method and predictor–corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput. Meth. Appl. Mech. Eng. 290, 466–495 (2015)
33. Hong, Q., Kraus, J.: Parameter-robust stability of classical three-field formulation of Biot’s consolidation model. Electron. Trans. Numer. Anal. 48, 202–226 (2018)
34. Hwang, J., Sharma, M.: A 3-dimensional fracture propagation model for long-term water injection. In: 47th US Rock Mechanics/Geomechanics Symposium (2013)Google Scholar
35. Irzal, F., Remmers, J.J., Huyghe, J.M., de Borst, R.: A large deformation formulation for fluid flow in a progressively fracturing porous material. Comput. Methods Appl. Mech. Eng. 256, 29–37 (2013)
36. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. In: Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (2000)Google Scholar
37. Lee, J.J.: Robust error analysis of coupled mixed methods for Biot’s consolidation model. J. Sci. Comput. 69(2), 610–632 (2016)
38. Lee, S., Mikelić, A., Wheeler, M.F., Wick, T.: Phase-field modeling of proppant-filled fractures in a poroelastic medium. Comput. Methods Appl. Mech. Eng. 312, 509–541 (2016a)
39. Lee, S., Wheeler, M.F., Wick, T.: Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. Comput. Methods Appl. Mech. Eng. 305, 111–132 (2016b)
40. Lee, S., Wheeler, M.F., Wick, T.: Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches. J. Comput. Appl. Math. 314, 40–60 (2017a)
41. Lee, S., Wheeler, M.F., Wick, T., Srinivasan, S.: Initialization of phase-field fracture propagation in porous media using probability maps of fracture networks. Mech. Res. Commun. 80, 16–23 (2017b)Google Scholar
42. Lee, J.J., Mardal, K.A., Winther, R.: Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Sci. Comput. 39(1), A1–A24 (2017c)
43. Lee, S., Mikelić, A., Wheeler, M.F., Wick, T.: Phase-field modeling of two phase fluid filled fractures in a poroelastic medium (2018). SIAM Multiscale Model Simul. 16(4), 1542–1580 (2018)
44. Liu, R.: Discontinuous galerkin finite element solution for poromechanics. Ph.D. thesis, The University of Texas at Austin (2004)Google Scholar
45. Markert, B., Heider, Y.: Recent Trends in Computational Engineering—CE2014: Optimization, Uncertainty, Parallel Algorithms, Coupled and Complex Problems, chap. Coupled Multi-Field Continuum Methods for Porous Media Fracture, pp. 167–180. Springer, Cham (2015)Google Scholar
46. McClure, M.W., Kang, C.A.: A three-dimensional reservoir, wellbore, and hydraulic fracturing simulator that is compositional and thermal, tracks proppant and water solute transport, includes non-darcy and non-newtonian flow, and handles fracture. SPE-182593-MS (2017)Google Scholar
47. Miehe, C., Mauthe, S.: Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media. Comput. Methods Appl. Mech. Eng. 304, 619–655 (2016)
48. Miehe, C., Mauthe, S., Teichtmeister, S.: Minimization principles for the coupled problem of Darcy-Biot-type fluid transport in porous media linked to phase field modeling of fracture. J. Mech. Phys. Solids 82, 186–217 (2015)
49. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)
50. Mikelić, A., Wang, B., Wheeler, M.F.: Numerical convergence study of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 18(3), 325–341 (2014)
51. Mikelić, A., Wheeler, M., Wick, T.: A phase-field approach to the fluid filled fracture surrounded by a poroelastic medium. ICES Report 13-15 (2013)Google Scholar
52. Mikelić, A., Wheeler, M., Wick, T.: Phase-field modeling of pressurized fractures in a poroelastic medium. ICES Report 14-18 (2014)Google Scholar
53. Mikelić, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17(3), 455–462 (2012)
54. Mikelić, A., Wheeler, M.F., Wick, T.: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model. Simul. 13(1), 367–398 (2015a)
55. Mikelić, A., Wheeler, M.F., Wick, T.: Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput. Geosci. 19(6), 1171–1195 (2015b)
56. Mikelić, A., Wheeler, M.F., Wick, T.: A quasi-static phase-field approach to pressurized fractures. Nonlinearity 28(5), 1371–1399 (2015c)
57. Murad, M.A., Loula, A.F.: Improved accuracy in finite element analysis of Biot’s consolidation problem. Comput. Methods Appl. Mech. Eng. 95(3), 359–382 (1992)
58. Murad, M.A., Loula, A.F.D.: On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37(4), 645–667 (1994)
59. Nguyen, T., Yvonnet, J., Zhu, Q.Z., Bornert, M., Chateau, C.: A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography. Comput. Methods Appl. Mech. Eng. 312, 567–595 (2016)
60. Philips, P., Wheeler, M.: A coupling of mixed and galerkin finite element methods for poro-elasticity. Comput. Geosci. 12(4), 417–435 (2003)Google Scholar
61. Rodrigo, C., Gaspar, F., Hu, X., Zikatanov, L.: Stability and monotonicity for some discretizations of the Biots consolidation model. Comput. Methods Appl. Mech. Eng. 298, 183–204 (2016)
62. Santillan, D., Juanes, R., Cueto-Felgueroso, L.: Phase field model of fluid-driven fracture in elastic media: immersed-fracture formulation and validation with analytical solutions. J. Geophys. Res. Solid Earth 122, 2565–2589 (2017)Google Scholar
63. Schrefler, B.A., Secchi, S., Simoni, L.: On adaptive refinement techniques in multi-field problems including cohesive fracture. Comput. Meth. Appl. Mech. Eng. 195, 444–461 (2006)
64. Sneddon, I.N.: The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc. R. Soc. Lond. A 187, 229–260 (1946)
65. Sneddon, I.N., Lowengrub, M.: Crack Problems in the Classical Theory of Elasticity. SIAM Series in Applied Mathematics. Wiley, Philadelphia (1969)
66. Tolstoy, I.: Acoustic, Elasticity, and Thermodynamics of Porous Media. Twenty-One Papers by M.A. Biot. Acoustical Society of America, New York (1992)Google Scholar
67. van Duijn, C.J., Mikelić, A., Wick, T.: A monolithic phase-field model of a fluid-driven fracture in a nonlinear poroelastic medium. Math. Mech. Solids (2018).
68. Wheeler, M., Wick, T., Wollner, W.: An augmented-Lagangrian method for the phase-field approach for pressurized fractures. Comput. Meth. Appl. Mech. Eng. 271, 69–85 (2014)
69. Wick, T.: Coupling fluid–structure interaction with phase-field fracture. J. Comput. Phys. 327, 67–96 (2016a)Google Scholar
70. Wick, T.: Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity. Comput. Mech. 57(6), 1017–1035 (2016b)
71. Wick, T.: An error-oriented Newton/inexact augmented Lagrangian approach for fully monolithic phase-field fracture propagation. SIAM J. Sci. Comput. 39(4), B589–B617 (2017)
72. Wick, T.: Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation. Comput. Methods Appl. Mech. Eng. 325, 577–611 (2017)
73. Wick, T., Lee, S., Wheeler, M.: 3D phase-field for pressurizedfracture propagation in heterogeneous media. In: ECCOMAS and IACMCoupled Problems Proceedings, May 2015 at San Servolo, Venice, Italy (2015)Google Scholar
74. Wick, T., Singh, G., Wheeler, M.: Fluid-filled fracture propagation using a phase-field approach and coupling to a reservoir simulator. SPE J. 21(03), 981–999 (2016)Google Scholar