Acta Oceanologica Sinica

, Volume 38, Issue 9, pp 71–86 | Cite as

Revisiting the dependence of thermocline-dwelling foraminiferal B/Ca on temperature and [CO 3 2− ], and its application in reconstruction of the subsurface carbonate system in the tropical western Pacific since 24 ka

  • Jingteng Guo
  • Tiegang LiEmail author
  • Zhifang XiongEmail author
  • Xiaohua Qiu
  • Fengming Chang


The B/Ca ratio of planktonic foraminifer shells has been used as a proxy for reconstructing past ocean carbonate chemistry. However, recent studies have revealed significant uncertainties associated with this proxy, such as whether seawater temperature or [CO 3 2− ] is the dominant control on the partition coefficient (KD) of planktonic foraminiferal B/Ca. To address these uncertainties and thus improve our understanding of the planktonic foraminiferal B/Ca proxy, we analysed B/Ca ratios in the tests of Neogloboquadrina dutertrei (300–355 urn) and Pulleniatina obliquiloculata (355–400 μm) in surface sediment samples from the tropical western Pacific and South China Sea. The relationship between these B/Ca ratios and bottom water calcite saturation states (Δ[CO 3 2− ]) is weak, thus suggesting only a small dissolution effect on the B/Ca of the two species. The correlation coefficients (R2) between the B/Ca ratios of N. dutertrei and P. obliquiloculata and environmental parameters (e.g., temperature, salinity, phosphate, DIC and ALK) in the tropical western Pacific and South China Sea are not high enough to justify using B/Ca ratios as a palaeoenvironmental proxy in the study areas. The significant correlation between KD values of N. dutertrei and P. obliquiloculata and carbonate system parameters (e.g., [CO 3 2− ], DIC, ALK, pH and [HCO 3 ]) in the study area reflect chemical links between the KD denominator and these variables. Based on our surface sediment calibration, an empirical relationship between the KD of N. dutertrei and temperature is proposed in the tropical western Pacific. We also generated a record of B/Ca ratios in N. dutertrei (300–355 μm) from Core MD06-3052 in the tropical western Pacific over the past 24 ka to evaluate the application of the revised B/Ca proxy method. Based on the reconstructed empirical relationship for B/Ca and subsurface seawater ALK, we estimated subsurface seawater carbonate system parameters in the tropical western Pacific since 24 ka. In general, the estimated subsurface seawater pH and [CO 3 2− ] show an increase with time, and the record of subsurface seawater pCO2 shows a decrease with time, in the tropical western Pacific over the past 24 ka. The consistent trends in subsurface seawater pCO2 and opal flux during deglaciation may imply that the reported increase in subsurface water pCO2 in the study area was promoted by enhanced upwelling in the Southern Ocean.

Key words

planktonic foraminifera B/Ca carbonate chemistry tropical western Pacific South China Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen K A, Honisch B. 2012. The planktic foraminiferal B/Ca proxy for seawater carbonate chemistry: A critical evaluation. Earth and Planetary Science Letters, 345–348: 203–211, doi: 10.1016/j.epsl.2012.06.012Google Scholar
  2. Allen K A, Honisch B, Eggins S M, et al. 2011. Controls on boron incorporation in cultured tests of the planktic foraminifer Or-bulina universa. Earth and Planetary Science Letters, 309(3-4): 291–301, doi: 10.1016/j.epsl.2011.07.010Google Scholar
  3. Allen K A, Honisch B, Eggins S M, et al. 2016. Trace element proxies for surface ocean conditions: A synthesis of culture calibrations with planktic foraminifera. Geochimica et Cosmochimica Acta, 193: 197–221, doi: 10.1016/j.gca.2016.08.015Google Scholar
  4. Anderson R, Ali S, Bradtmiller L, et al. 2009. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science, 323(5920): 1443–1448, doi: 10.1126/science.1167441Google Scholar
  5. Archer D, Emerson S, Reimers C. 1989. Dissolution of calcite in deep-sea sediments: pH and 02 microelectrode results. Geochimica et Cosmochimica Acta, 53(11): 2831–2845, doi: 10.1016/0016-7037(89)90161-0Google Scholar
  6. Babila T L, Rosenthal Y, Conte M H. 2014. Evaluation of the biogeo-chemical controls on B/Ca of Globigerinoides ruber white from the Oceanic Flux Program, Bermuda. Earth and Planetary Science Letters, 404: 67–76, doi: 10.1016/j.epsl.2014.05.053Google Scholar
  7. Bemis B E, Spero H J, Bijma J, et al. 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceano-graphy, 13(2): 150–160, doi: 10.1029/98PA00070Google Scholar
  8. Berger W H. 1968. Planktonic Foraminifera: selective solution and pa-leoclimatic interpretation. Deep-Sea Research and Oceano-graphic Abstracts, 15(1): 31–43, doi: 10.1016/0011-7471(68)90027-2Google Scholar
  9. Broecker W S, Anderson R, Clark E, et al. 2001. Record of seafloor CaC03 dissolution in the central equatorial Pacific. Geochemistry, Geophysics, Geosystems, 2(6): 1050–7, doi: 10.1029/2000G C000151Google Scholar
  10. Brown S J, Elderfield H. 1996. Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: Evidence of shallow Mg-dependent dissolution. Pa-leoceanography, 11(5): 543–551, doi: 10.1029/96PA01491Google Scholar
  11. Coadic R, Bassinot F, Dissard D, et al. 2013. A core-top study of dissolution effect on B/Ca in Globigerinoides sacculifer from the tropical Atlantic: Potential bias for paleo-reconstruction of sea-water carbonate chemistry. Geochemistry, Geophysics, Geosystems, 14(4): 1053–1068, doi: 10.1029/2012GC004296Google Scholar
  12. Dai Yuhao, Yu Jimin, Johnstone H J H. 2016. Distinct responses of planktonic foraminiferal B/Ca to dissolution on seafloor. Geochemistry, Geophysics, Geosystems, 17(4): 1339–1348, doi: 10.1002/2015GC006199CrossRefGoogle Scholar
  13. Dekens P S, Lea D W, Pak D K, et al. 2002. Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation. Geochemistry, Geophysics, Geosystems, 3(4): 1022Google Scholar
  14. Dickson A G. 1990. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273. 15 to 318.15 K. Deep Sea Research Part A. Oceanographic Research Papers, 37(5): 755–766, doi:10.1016/0198-0149(90)90004-FCrossRefGoogle Scholar
  15. Dickson A G, Millero F J. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A. Oceanographic Research Papers, 34(10): 1733–1743, doi: 10.1016/0198-0149(87)90021-5CrossRefGoogle Scholar
  16. Emerson S, Bender M. 1981. Carbon fluxes at the sediment-water interface of the deep-sea. Calcium carbonate preservation. Journal of Marine Research, 39: 139–162Google Scholar
  17. Foster G L. 2008. Seawater pH, pCO2 and [CO3 2] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth and Planetary Science Letters, 271(1-4): 254–266, doi: 10.1016/j.epsl.2008.04.015Google Scholar
  18. Foster G L, Sexton P F. 2014. Enhanced carbon dioxide outgassing from the eastern equatorial Atlantic during the last glacial. Geology, 42(11): 1003–1006, doi: 10.1130/G35806.1Google Scholar
  19. Goyet C, Healy R J, Ryan J P. 2000. Global distribution of total inorganic carbon and total alkalinity below the deepest winter mixed layer depths. ORNL/CDIAC-127, NDP-076. Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of EnergyCrossRefGoogle Scholar
  20. Haynes L L, Honisch B, Dyez K A, et al. 2017. Calibration of the B/Ca proxy in the planktic foraminifer Orbulina universa to Paleo-cene seawater conditions. Paleoceanography, 32(6): 580–599, doi: 10.1002/2016PA003069Google Scholar
  21. Hemming N G, Hanson G N. 1992. Boron isotopic composition and concentration in modern marine carbonates. Geochimica et Cosmochimica Acta, 56(1): 537–543, doi: 10.1016/0016-7037(92)90151-8CrossRefGoogle Scholar
  22. Hendry K R, Rickaby R E M, Meredith M P, et al. 2009. Controls on stable isotope and trace metal uptake in Neogloboquadrina pachydermia (sinistral) from an Antarctic sea-ice environment. Earth and Planetary Science Letters, 278(1-2): 67–77, doi: 10.1016/j.epsl.2008.11.026Google Scholar
  23. Henehan M J, Foster G L, Rae J W B, et al. 2015. Evaluating the utility of B/Ca ratios in planktic foraminifera as a proxy for the carbonate system: A case study of Globigerinoides ruber. Geochemistry, Geophysics, Geosystems, 16(4): 1052–1069, doi: 10.1002/2014GC005514Google Scholar
  24. Henehan M J, Rae J W B, Foster G L, et al. 2013. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber (or use in palaeo-CO2 reconstruction. Earth and Planetary Science Letters, 364: 111–122, doi: 10.1016/j.epsl.2012.12.029Google Scholar
  25. Holland K, Eggins S M, Honisch B, et al. 2017. Calcification rate and shell chemistry response of the planktic foraminifer Orbulina universa to changes in microenvironment seawater carbonate chemistry. Earth and Planetary Science Letters, 464: 124–134, doi: 10.1016/j.epsl.2017.02.018Google Scholar
  26. Johnstone H J H, Schulz M, Barker S, et al. 2010. Inside story: An X-ray computed tomography method for assessing dissolution in the tests of planktonic foraminifera. Marine Micropaleontology, 77(1-2): 58–70, doi: 10.1016/j.marmicro.2010.07.004Google Scholar
  27. Key R M, Kozyr A, Sabine C L, et al. 2004. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles, 18(4): GB4031, doi: 10.1029/2004GB002247Google Scholar
  28. Klochko K, Kaufman A J, Yao Wengsheng, et al. 2006. Experimental measurement of boron isotope fractionation in seawater. Earth and Planetary Science Letters, 248(1-2): 276–285, doi: 10.1016/j.epsl.2006.05.034CrossRefGoogle Scholar
  29. Krupinski N B Q, Russell A D, Pak D K, et al. 2017. Core-top calibration of B/Ca in Pacific Ocean Neogloboquadrina incompta and Globigerina bulloides as a surface water carbonate system proxy. Earth and Planetary Science Letters, 466: 139–151, doi: 10.1016/j.epsl.2017.03.007Google Scholar
  30. Lea D W, Pak D K, Spero H J. 2000. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science, 289(5485): 1719–1724, doi: 10.1126/science.289.5485.1719Google Scholar
  31. Marchitto T M, Lynch-Stieglitz J, Hemming S R. 2005. Deep pacific CaCO3 compensation and glacial-interglacial atmospheric CO2. Earth and Planetary Science Letters, 231(3-4): 317–336, doi: 10.1016/j.epsl.2004.12.024Google Scholar
  32. Martin P A, Lea D W. 2002. A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg/Ca. Geochemistry, Geophysics, Geosystems, 3(10): 8401, doi: 10.1029/2001GC000280Google Scholar
  33. Mehrbach C, Culberson C H, Hawley J E, et al. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18(6): 897–907, doi: 10.4319/10.1973.18.6.0897Google Scholar
  34. Millero F J. 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta, 59: 661–677, doi: 10.1016/0016-7037(94)00354-0CrossRefGoogle Scholar
  35. Mohtadi M, Steinke S, Groeneveld J, et al. 2009. Low-latitude control on seasonal and interannual changes in planktonic foraminiferal flux and shell geochemistry off south Java: A sediment trap study. Paleoceanography, 24(1): PA1201, doi: 10.1029/2008PA001636Google Scholar
  36. Naik S S, Naidu P D, Foster G L, et al. 2015. Tracing the strength of the southwest monsoon using boron isotopes in the eastern Arabian Sea. Geophysical Research Letters, 42(5): 1450–1458, doi: 10.1002/2015GL063089Google Scholar
  37. Naik S S, Naidu P D, Govil P, et al. 2010. Relationship between weights of planktonic foraminifer shell and surface water CO3 2 concentration during the Holocene and Last Glacial Period. Marine Geology, 275(1-4): 278–282, doi: 10.1016/j.margeo.2010.05.004Google Scholar
  38. Ni Yunyan, Foster G L, Bailey T, et al. 2007. A core top assessment of proxies for the ocean carbonate system in surface-dwelling fo-raminifers. Paleoceanography, 22(3): PA3212, doi: 10.1029/ 2006PA001337Google Scholar
  39. Olsen A, Key R M, Van Heuven S, et al. 2016. The global ocean data analysis project version 2 (GLODAPv2)-an internally consistent data product for the world ocean. Earth System Science Data, 8(2): 297–323, doi: 10.5194/essd-8-297-2016Google Scholar
  40. Pelletier G, Lewis E, Wallace D. 2007. C02SYS. XLS: A Calculator for the C02 System in Seawater for Microsoft Excel/VBA. Olympia, WA/Upton, NY, USA: Washington State Department of Ecology/Brookhaven National LaboratoryGoogle Scholar
  41. Qiu Xiaohua, Li Tiegang, Chang Fengming, et al. 2014. Sea surface temperature and salinity reconstruction based on stable isotopes and Mg/Ca of planktonic foraminifera in the western Pacific Warm Pool during the last 155 ka. Chinese Journal of Oceanology and Limnology, 32(1): 187–200, doi: 10.1007/s00343-014-3073-yGoogle Scholar
  42. Ravelo A C, Fairbanks R G. 1992. Oxygen isotopic composition of multiple species of planktonic foraminifera: recorders of the modern photic zone temperature gradient. Paleoceanography, 7(6): 815–831, doi: 10.1029/92PA02092Google Scholar
  43. Regenberg M, Niirnberg D, Steph S, et al. 2006. Assessing the effect of dissolution on planktonic foraminiferal Mg/Ca ratios: Evidence from Caribbean core tops. Geochemistry, Geophysics, Geosystems, 7(7): Q07P15, doi: 10.1029/2005GC001019Google Scholar
  44. Rincon-Martinez D, Steph S, Lamy F, et al. 2011. Tracking the equatorial front in the eastern equatorial Pacific Ocean by the isotopic and faunal composition of planktonic foraminifera. Marine Micropaleontology, 79(1-2): 24–40, doi: 10.1016/j.marmicro.2011.01.001Google Scholar
  45. Rippert N, Niirnberg D, Raddatz J, et al. 2016. Constraining foraminiferal calcification depths in the western Pacific warm pool. Marine Micropaleontology, 128: 14–27, doi: 10.1016/j.marmicro.2016.08.004Google Scholar
  46. Rosenthal Y, Boyle E A. 1993. Factors controlling the fluoride content of planktonic foraminifera: An evaluation of its paleoceano-graphic applicability. Geochimica et Cosmochimica Acta, 57(2): 335–346, doi: 10.1016/0016-7037(93)90435-YGoogle Scholar
  47. Sadekov A Y, Ganeshram R, Pichevin L, et al. 2013. Palaeoclimate reconstructions reveal a strong link between El Nino-Southern Oscillation and Tropical Pacific mean state. Nature Communications, 4: 2692, doi: 10.1038/ncomms3692Google Scholar
  48. Salmon K H, Anand P, Sexton P F, et al. 2016. Calcification and growth processes in planktonic foraminifera complicate the use of B/Ca and U/Ca as carbonate chemistry proxies. Earth and Planetary Science Letters, 449: 372–381, doi: 10.1016/j.epsl.2016.05.016Google Scholar
  49. Schmidt G A, Bigg G R, Rohling E J. 1999. Global seawater oxygen-18 database-vl. 21.[2018-2]Google Scholar
  50. Schmuker B, Schiebel R. 2002. Planktic foraminifers and hydrography of the eastern and northern Caribbean Sea. Marine Micropaleontology, 46(3-4): 387–403, doi: 10.1016/S0377-8398(02)00082-8Google Scholar
  51. Seki O, Foster G L, Schmidt D N, et al. 2010. Alkenone and boron-based Pliocene pCO2 records. Earth and Planetary Science Letters, 292(1-2): 201–211, doi: 10.1016/j.epsl.2010.01.037Google Scholar
  52. Spero H J, Lea D W. 2002. The cause of carbon isotope minimum events on glacial terminations. Science, 296(5567): 522–525, doi: 10.1126/science.l069401Google Scholar
  53. Tripati A K, Roberts C D, Eagle R A. 2009. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science, 326(5958): 1394–1397, doi: 10.1126/science.1178296Google Scholar
  54. Uppstrom L R. 1974. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Research and Oceanographic Abstracts, 21(2): 161–162, doi: 10.1016/0011-7471(74)90074-6CrossRefGoogle Scholar
  55. Waelbroeck C, Labeyrie L, Michel E, et al. 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, 21(1-3): 295–305, doi: 10.1016/S0277-3791(01)00101-9Google Scholar
  56. Wara M W, Delaney M L, Bullen T D, et al. 2003. Possible roles of pH, temperature, and partial dissolution in determining boron concentration and isotopic composition in planktonic foraminifera. Paleoceanography, 18(4): 1100, doi: 10.1029/ 2002PA000797Google Scholar
  57. Yu Jimin, Day J, Greaves M, Elderfield H. 2005. Determination of multiple element/calcium ratios in foraminiferal calcite by quadruple ICP - MS. Geochemistry, Geophysics, Geosystems, 6(8): Q08P01, doi: 10.1029/2005GC000964Google Scholar
  58. Yu Jimin, Elderfield H. 2007. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth and Planetary Science Letters, 258(1-2): 73–86, doi: 10.1016/j.epsl.2007.03.025Google Scholar
  59. Yu Jimin, Elderfield H, Honisch B. 2007. B/Ca in planktonic foraminifera as a proxy for surface seawater pH. Paleoceanography, 22(2): PA2202, doi: 10.1029/2006PA001347Google Scholar
  60. Yu Jimin, Foster G L, Elderfield H, et al. 2010. An evaluation of benthic foraminiferal B/Ca and 81 IB for deep ocean carbonate ion and pH reconstructions. Earth and Planetary Science Letters, 293(1-2): 114–120, doi: 10.1016/j.epsl.2010.02.029Google Scholar
  61. Zeebe R E, Wolf-Gladrow D. 2001. CO2 in seawater: equilibrium, kinetics, isotopes. Netherlands: ElsevierGoogle Scholar

Copyright information

© Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Marine Geology and Environment, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.First Institute of Oceanography, Ministry of Natural ResourcesQingdaoChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Laboratory for Marine Geology and EnvironmentPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
  5. 5.No. 1 Institute of Geology and Mineral Resources of Shandong ProvinceJinanChina

Personalised recommendations