Acta Oceanologica Sinica

, Volume 38, Issue 9, pp 59–70 | Cite as

Origin of Cu in the PACMANUS hydrothermal field from the eastern Manus back-arc basin: evidence from mass balance modeling

  • Yao MaEmail author
  • Xiaoyuan Wang
  • Shuai Chen
  • Xuebo Yin
  • Bowen Zhu
  • Kun Guo
  • Zhigang Zeng


Hydrothermal precipitates associated with active vents in the eastern Manus Basin, an actively opening back-arc basin in the Bismarck Sea, Papua New Guinea, are among the most Cu-rich on the modern seafloor. The volcanic rocks associated with this mineralization may be insufficiently enriched in Cu to account for the Cu content of the sulfides by simple leaching. The PACMANUS hydrothermal field lies in the eastern portion of the eastern Manus Basin. Mass balance modeling of the PACMANUS hydrothermal system indicates that simple leaching of a stationary reaction zone (0.144 km3) by hydrothermal fluids cannot yield the Cu found in associated sulfide deposits because unacceptably high leaching, transportation and precipitation efficiencies are required to derive the Cu in sulfides by leaching processes. With 100% leaching, transport and precipitating efficiency, 0.166 km3 of volcanic rocks would need to be leached to account for the Cu budget of hydrothermal sulfide deposits. The key requirement for forming metal-rich magmatic fluids is a large amount of metals available to enter the exsolved vapor phase. Magmas generated in the eastern Manus Basin inherently have high fO2 because of metasomatism of the mantle source by oxidized materials from the subducted slab, leading to copper enrichment in the magma chamber. Moreover, the presence of Cu in gas-rich melt inclusi on bubbles in Pual Ridge andesite is evidence that degassing and partitioning of Cu into the magmatic volatile phase has occurred in the eastern Manus Basin. Numerical mass balance modeling indicates that approximately 0.236 Mt Cu was potentially transferred to the hydrothermal system per cubic kilometer magma. Magmatic degassing seems to play a more significant role than leaching.

Key words

back-arc basin mass balance model PACMANUS hydrothermal field source of Cu 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are very appreciative towards the anonymous reviewers for their valuable comments on the manuscript revision. We also thank Cushley David for language editing and Zhang Kaidi and Zhang Jie from the Institute of Oceanology, Chinese Academy of Sciences, for valuable advice during the revision.


  1. Ammonn M, Hauert R, Burtscher H, et al. 1993. Photoelectric charging of ultrafine volcanic aerosols: detection of Cu(I) as a tracer of chlorides in magmatic gases. Journal of Geophysical Research, 98(B1): 551–556, doi: 10.1029/92JB01870CrossRefGoogle Scholar
  2. Auzende J M, Urabe T. 1996a. Cruise explores hydrothermal vents of the Manus Basin. Eos, Transactions American Geophysical Union, 77: 244, doi: 10.1029/96EO00174CrossRefGoogle Scholar
  3. Auzende J M, Urabe T. 1996b. Submersible observation of tectonic, magmatic and hydrothermal activity in the Manus Basin (Papua New Guinea). Eos, Transactions American Geophysical Union, 77: 115CrossRefGoogle Scholar
  4. Ballhaus C, Ryan C G, Mernagh T P, et al. 1994. The partitioning of Fe, Ni, Cu, Pt, and Au between sulfide, metal, and fluid phases: a pilot study. Geochimica et Cosmochimica Acta, 58(2): 811–826, doi: 10.1016/0016-7037(94)90507-XCrossRefGoogle Scholar
  5. Bartetzko A, Paulick H, Iturrino G, et al. 2003. Facies reconstruction of a hydrothermally altered dacite extrusive sequence: evidence from geophysical downhole logging data (ODP Leg 193). Geochemistry, Geophysics, Geosystems, 4(10): 1087CrossRefGoogle Scholar
  6. Beaudoin Y, Scott S D. 2009. Pb in the PACMANUS sea-floor hydrothermal system, eastern Manus Basin: numerical modeling of a magmatic versus leached origin. Economic Geology, 104(5): 749–758, doi: 10.2113/gsecongeo.104.5.749CrossRefGoogle Scholar
  7. Beaudoin Y, Scott S D, Gorton M P, et al. 2007. Effects of hydrothermal alteration on Pb in the active PACMANUS hydrothermal field, ODP Leg 193, Manus Basin, Papua New Guinea: a LA-ICP-MS study. Geochimica et Cosmochimica Acta, 71(17): 4256–4278, doi: 10.1016/j.gca.2007.06.034CrossRefGoogle Scholar
  8. Becker K, Morin R H, Davis E E. 1994. Permeabilities in the Middle Valley hydrothermal system measured with packer and flowmeter experiments. In: Davis E E, Mottl M J, Fisher A T, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 139: 613–625Google Scholar
  9. Beier C, Bach W, Turner S, et al. 2015. Origin of silicic magmas at spreading centres: an example from the South East Rift, Manus Basin. Journal of Petrology, 56(2): 255–272, doi: 10.1093/petrology/egu077CrossRefGoogle Scholar
  10. Binns R A. 2004. Eastern Manus basin, Papua New Guinea: guides for volcanogenic massive sulphide exploration from a modern seafloor analogue. CSIRO Explores, 2: 59–80Google Scholar
  11. Binns R A, Barriga F J A S, Miller D J. 2007. Leg 193 synthesis: Anatomy of an active felsic-hosted hydrothermal system, eastern Manus Basin, Papua New Guinea. In: Barriga F J A S, Binns R A, Miller D J, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results. College Station: TX (Ocean Drilling Program), 193: 1–71Google Scholar
  12. Binns R A, Scott S D. 1993. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. Economic Geology, 88(8): 2226–2236, doi: 10.2113/gsecongeo.88.8.2226CrossRefGoogle Scholar
  13. Binns R A, Scott S D, Gemmell J B, et al. 1997. The Susu Knolls hydrothermal field, eastern Manus Basin, Papua New Guinea. Eos, Transactions American Geophysical Union, 78: 772Google Scholar
  14. Cathles L M. 1993. A capless 350°C flow zone model to explain megaplumes, salinity variations, and high-temperature veins in ridge axis hydrothermal systems. Economic Geology, 88(8): 1977–1988, doi: 10.2113/gsecongeo.88.8.1977CrossRefGoogle Scholar
  15. Chen Zuxing, Zeng Zhigang, Wang Xiaoyuan, et al. 2018. U-Th/He dating and chemical compositions of apatite in the dacite from the southwestern Okinawa Trough: Implications for petrogenesis. Journal of Asian Earth Sciences, 161: 1–13, doi: 10.1016/j.jseaes.2018.04.032CrossRefGoogle Scholar
  16. Deloule É, Paillat O, Pichavant M, et al. 1995. Ion microprobe determination of water in silicate glasses: methods and applications. Chemical Geology, 125(1-2): 19–28, doi: 10.1016/0009-2541(95)00070-3CrossRefGoogle Scholar
  17. de Ronde C E J, Massoth G J, Butterfield D A, et al. 2011. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Mineralium Deposita, 46(5-6): 541–584, doi: 10.1007/s00126-011-0345-8CrossRefGoogle Scholar
  18. de Ronde C E J, Walker S L, Ditchburn R G, et al. 2014. The anatomy of a buried submarine hydrothermal system, Clark volcano, Kermadec arc, New Zealand. Economic Geology, 109(8): 2261–2292, doi: 10.2113/econgeo.109.8.2261CrossRefGoogle Scholar
  19. Douville E, Bienvenu P, Charlou J L, et al. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5): 627–643, doi: 10.1016/S0016-7037(99)00024-1CrossRefGoogle Scholar
  20. Evans K A, Elburg M A, Kamenetsky V S. 2012. Oxidation state of subarc mantle. Geology, 40(9): 783–786, doi: 10.1130/G33037.1CrossRefGoogle Scholar
  21. Fleet M E, Wu T W. 1993. Volatile transport of platinum-group elements in sulfide-chloride assemblages at 1000°C. Geochimica et Cosmochimica Acta, 57(15): 3519–3531, doi: 10.1016/0016-7037(93)90136-KCrossRefGoogle Scholar
  22. Fouquet Y, Eissen JP, Ondréas H, et al. 1998. Extensive volcaniclastic deposits at the Mid-Atlantic Ridge axis: results of deep-water basaltic explosive volcanic activity?. Terra Nova, 10(5): 280–286, doi: 10.1046/j.1365-3121.1998.00204.xCrossRefGoogle Scholar
  23. Gale A, Dalton C A, Langmuir C H, et al. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489–518, doi: 10.1029/2012GC004334CrossRefGoogle Scholar
  24. Gemmell J B, Binns R A, Parr J M. 1996. Comparison of sulfur isotope values between modern back-arc and mid-ocean ridge seafloor hydrothermal systems. Eos, Transactions American Geophysical Union, 77: 117Google Scholar
  25. Gruen G, Weis P, Driesner T, et al. 2014. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation. Earth and Planetary Science Letters, 404: 307–318, doi: 10.1016/j.epsl.2014.07.041CrossRefGoogle Scholar
  26. Guo Kun, Zhai Shikui, Wang Xiaoyuan, et al. 2018. The dynamics of the southern Okinawa Trough magmatic system: New insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks. Chemical Geology, 497: 146–161, doi: 10.1016/j.chemgeo.2018.09.002CrossRefGoogle Scholar
  27. Hannington M D, Jonasson I R, Herzig P M, et al. 1995. Physical and chemical processes of seafloor mineralization at mid-ocean ridges. In: Humphris S, Zierenberg R, Mullineaux L, et al., eds. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington DC: AGU, 115–157Google Scholar
  28. Hannington M, Jamieson J, Monecke T, et al. 2010. Modern sea-floor massive sulfides and base metal resources: toward an estimate of global sea-floor massive sulfide potential. Society of Economic Geologists Special Publication, 15: 317–338Google Scholar
  29. Heinrich C A, Ryan C G, Mernagh T P, et al. 1992. Segregation of ore metals between magmatic brine and vapor: a fluid inclusion study using PIXE microanalysis. Economic Geology, 87(6): 1566–1583, doi: 10.2113/gsecongeo.87.6.1566CrossRefGoogle Scholar
  30. Hekinian R, Pineau F, Shilobreeva S, et al. 2000. Deep sea explosive activity on the Mid-Altantic Ridge near 34°15′ N: Magma composition, vesicularity and volatile content. Journal of Volcanology and Geothermal Research, 98(1-4): 49–77, doi: 10.1016/S0377-0273(99)00190-0CrossRefGoogle Scholar
  31. Herzig P M, Petersen S, Kuhn T, et al. 2003. Shallow drilling of seafloor hydrothermal systems using R/V Sonne and the BGS rockdrill, Conical Seamount (New Ireland fore-arc) and Pacmanus (eastern Manus Basin), Papua New Guinea. InterRidge News, 12: 22–26Google Scholar
  32. Hurwitz S, Navon O. 1994. Bubble nucleation in rhyolitic melts: Experiments at high pressure, temperature, and water content. Earth and Planetary Science Letters, 122(3-4): 267–285, doi: 10.1016/0012-821X(94)90001-9CrossRefGoogle Scholar
  33. Ishibashi J, Wakita H, Okamura K, et al. 1996. Chemical characteristics of hydrothermal fluids from the Manus back-arc basin, Papua New Guinea. Eos, Transactions American Geophysical Union, 77: 116Google Scholar
  34. Jankowski P, Lipton I, Blackburn J. 2011. Nautilus Minerals Incorporated NI43-101 Technical Report 2010 PNG, Tonga, Fiji, Solomon Islands, New Zealand, Vanuatu and the ISA. Australia: SRK Consulting Pty Ltd., 1–201Google Scholar
  35. Jenner F E, O’Neill H S C, Arculus R J, et al. 2010. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. Journal of Petrology, 51(12): 2445–2464, doi: 10.1093/petrology/egq063CrossRefGoogle Scholar
  36. Jugo P J, Wilke M, Botcharnikov R E. 2010. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity. Geochimica et Cosmochimica Acta, 74(20): 5926–5938, doi: 10.1016/j.gca.2010.07.022CrossRefGoogle Scholar
  37. Kamenetsky V S, Binns R A, Gemmell J B, et al. 2001. Parental basaltic melts and fluids in eastern Manus backarc basin: Implications for hydrothermal mineralisation. Earth and Planetary Science Letters, 184(3-4): 685–702, doi: 10.1016/S0012-821X(00)00352-6CrossRefGoogle Scholar
  38. Kelley K A, Cottrell E. 2012. The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth and Planetary Science Letters, 329-330: 109–121, doi: 10.1016/j.epsl.2012.02.010CrossRefGoogle Scholar
  39. Lalou C, Brichet E, Hekinian R. 1985. Age dating of sulfide deposits from axial and off axial structures on the East Pacific Rise near 12°50′ N. Earth and Planetary Science Letters, 75(1): 59–71, doi: 10.1016/0012-821X(85)90050-0CrossRefGoogle Scholar
  40. Lalou C, Reyss J L, Brichet E, et al. 1993. New age data for Mid-Atlantic ridge hydrothermal sites: TAG and Snakepit chronology revisited. Journal of Geophysical Research, 98(B6): 9705–9713, doi: 10.1029/92JB01898CrossRefGoogle Scholar
  41. Landtwing M R, Furrer C, Redmond P B, et al. 2010. The Bingham canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Economic Geology, 105(1): 91–118, doi: 10.2113/gsecongeo.105.1.91Google Scholar
  42. Lee S M, Ruellan E. 2006. Tectonic and magmatic evolution of the Bismarck Sea, Papua New Guinea: review and new synthesis. In: Christie D M, Fisher C R, Lee S M, et al., eds. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Washington DC: American Geophysical Union, 166: 263–286Google Scholar
  43. Li Zhenggang, Chu Fengyou, Dong Yanhui, et al. 2016. Origin of selective enrichment of Cu and Au in sulfide deposits formed at immature back-arc ridges: Examples from the Lau and Manus basins. Ore Geology Reviews, 74: 52–62, doi: 10.1016/j.oregeorev.2015.11.010CrossRefGoogle Scholar
  44. Li Xiaohui, Zeng Zhigang, Yang Huixin, et al. 2019. Geochemistry of silicate melt inclusions in middle and southern Okinawa Trough rocks: Implications for petrogenesis and variable subducted sediment component injection. Geological Journal, 54(3): 1160–1189, doi: 10.1002/gj.v54.3CrossRefGoogle Scholar
  45. Lipton I. 2008. Mineral resource estimate, Solwara 1 project, Bismarck Sea, Papua New Guinea. Technical Report NI43-101. Toronto: Nautilus Minerals Inc.Google Scholar
  46. Lowell R R, Rona P A, von Herzen R P. 1995. Seafloor hydrothermal systems. Journal of Geophysical Research, 100(B1): 327–352, doi: 10.1029/94JB02222CrossRefGoogle Scholar
  47. Lowenstern J B. 1993. Evidence for a copper-bearing fluid in magma erupted at the Valley of ten thousand smokes, Alaska. Contributions to Mineralogy and Petrology, 114(3): 409–421, doi: 10.1007/BF01046542CrossRefGoogle Scholar
  48. Lowenstern J B. 1995. Application of silicate-melt inclusions to the study of magmatic volatiles. In: Thompson J F H, ed. Magmas, Fluids, and Ore Deposits. Canada: Mineralogical Society of Canada, 71–99Google Scholar
  49. Lowenstern J B, Mahood G A, Rivers M L, et al. 1991. Evidence for extreme partitioning of copper into a magmatic vapor phase. Science, 252(5011): 1405–1409, doi: 10.1126/science.252.5011.1405CrossRefGoogle Scholar
  50. Martinez F, Taylor B. 1996. Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin. Marine Geophysical Researches, 18(2-4): 203–224, doi: 10.1007/BF00286078CrossRefGoogle Scholar
  51. Martinez F, Taylor B. 2003. Controls on back-arc crustal accretion: insights from the Lau, Manus and Mariana basins. In: Larter R D, Leat P T, eds. Intra-Oceanic Subduction Systems: Tectonic and Magmatic Processes. Geological Society, London, Special Publications, 219: 19–54Google Scholar
  52. Moss R, Scott S D, Binns R A. 1997. Concentrations of gold and other ore metals in volcanics hosting the Pacmanus seafloor sulfide deposit. JAMSTEC Journal of Deep Sea Research, 13: 257–267Google Scholar
  53. Moss R, Scott S D, Binns R A. 2001. Gold content of eastern Manus Basin volcanic rocks: implications for enrichment in associated hydrothermal precipitates. Economic Geology, 96(1): 91–107Google Scholar
  54. Mühe R, Peücker-Ehrenbrink B, Devey C W, et al. 1997. On the redistribution of Pb in the oceanic crust during hydrothermal alteration. Chemical Geology, 137(1-2): 67–77, doi: 10.1016/S0009-2541(96)00151-9CrossRefGoogle Scholar
  55. Park S H, Lee S M, Kamenov G D, et al. 2010. Tracing the origin of subduction components beneath the South East Rift in the Manus Basin, Papua New Guinea. Chemical Geology, 269(3-4): 339–349, doi: 10.1016/j.chemgeo.2009.10.008CrossRefGoogle Scholar
  56. Parr J, Yeats C, Binns R. 2003. Petrology, trace element geochemistry and isotope geochemistry of sulfides and oxides from the PAC-MANUS hydrothermal field, eastern Manus Basin, Papua New Guinea. In: Yeats C, ed. Seabed Hydrothermal Systems of the Western Pacific: Current Research and New Directions. CSIRO Exploration and Mining Report 1112, 58–64Google Scholar
  57. Patten C, Barnes S J, Mathez E A, et al. 2013. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chemical Geology, 358: 170–188, doi: 10.1016/j.chemgeo.2013.08.040CrossRefGoogle Scholar
  58. Paulick H, Vanko D A, Yeats C J. 2004. Drill core-based facies reconstruction of a deep-marine felsic volcano hosting an active hydrothermal system (Pual Ridge, Papau New Guinea, ODP Leg 193). Journal of Volcanology and Geothermal Research, 130(1-2): 31–50, doi: 10.1016/S0377-0273(03)00275-0CrossRefGoogle Scholar
  59. Petersen S, Herzig P M, Hannington M D, et al. 2003. Gold-rich massive sulfides from the interior of the felsic-hosted PAC-MANUS massive sulfide deposit, eastern Manus Basin (PNG). In: Eliopoulos D G, et al., eds. Mineral Exploration and Sustainable Development. Rotterdam: Millpress, 171–174Google Scholar
  60. Resmini R G, Marsh B D. 1995. Steady-state volcanism, paleoeffusion rates, and magma system volume inferred from plagioclase crystal size distributions in mafic lavas: Dome Mountain, Nevada. Journal of Volcanology and Geothermal Research, 68(4): 273–296, doi: 10.1016/0377-0273(95)00003-5CrossRefGoogle Scholar
  61. Richards J P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1): 1–26, doi: 10.1016/j.oregeorev.2011.05.006CrossRefGoogle Scholar
  62. Rubin K. 1997. Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes: observations and predictions. Geochimica et Cosmochimica Acta, 61(17): 3525–3542, doi: 10.1016/S0016-7037(97)00179-8CrossRefGoogle Scholar
  63. Scott S D. 1997. Submarine hydrothermal systems and deposits. In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits. New York: WileyGoogle Scholar
  64. Scott S D, Binns R A. 1992. The PACMANUS deposit; actively forming submarine polymetallic sulfides in felsic volcanic rocks of Manus Basin, Papua New Guinea. International Geological Congress, 29: 754Google Scholar
  65. Scott S D, Binns R A. 1995. Hydrothermal processes and contrasting styles of mineralization in the western Woodlark and eastern Manus Basins of the western Pacific. Geological Society, London, Special Publication, 87(1): 191–205, doi: 10.1144/GSL.SP.1995. 087.01.16CrossRefGoogle Scholar
  66. Seewald J S, Seyfried W E Jr. 1990. The effect of temperature on metal mobility in subseafloor hydrothermal systems: constraints from basalt alteration experiments. Earth and Planetary Science Letters, 101(2-4): 388–403, doi: 10.1016/0012-821X(90)90168-WCrossRefGoogle Scholar
  67. Sinton J M, Ford L L, Chappell B, et al. 2003. Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea. Journal of Petrology, 44(1): 159–195, doi: 10.1093/petrology/44.1.159CrossRefGoogle Scholar
  68. Stanton R L. 1991. Understanding volcanic massive sulfides: past, present, and future. In: Hutchinson R W, Grauch R I, eds. Historical Perspectives of Genetic Concepts and Case Histories of Famous Discoveries. Society of Economic Geologists, 8: 82–95Google Scholar
  69. Stanton R L. 1994. Ore Elements in Arc Lavas. Oxford: Clarendon PressGoogle Scholar
  70. Sun Weidong, Huang Ruifang, Li He, et al. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97–131, doi: 10.1016/j.oregeorev.2014.09.004CrossRefGoogle Scholar
  71. Symonds R B, Reed M H, Rose W I. 1992. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes. Geochimica et Cosmochimica Acta, 56(2): 633–657, doi: 10.1016/0016-7037(92)90087-YCrossRefGoogle Scholar
  72. Symonds R B, Rose W I, Reed M H, et al. 1987. Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia. Geochimica et Cosmochimica Acta, 51(8): 2083–2101, doi: 10.1016/0016-7037(87)90258-4CrossRefGoogle Scholar
  73. Taylor B. 1979. Bismarck Sea: Evolution of a back-arc basin. Geology, 7(4): 171–174, doi: 10.1130/0091-7613(1979)7<171:BSEOAB>2.0.CO;2CrossRefGoogle Scholar
  74. Taylor H P Jr. 1997. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits. 3rd ed. New York: John Wiley & Sons, 229–302Google Scholar
  75. Thal J, Tivey M, Yoerger D, et al. 2014. Geologic setting of PAC-MANUS hydrothermal area-high resolution mapping and in situ observations. Marine Geology, 355: 98–114, doi: 10.1016/j.margeo.2014.05.011CrossRefGoogle Scholar
  76. Yang Kaihui, Scott S D. 1996. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature, 383(6599): 420–423, doi: 10.1038/383420a0CrossRefGoogle Scholar
  77. Yang Kaihui, Scott S D. 2002. Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific. Economic Geology, 97(5): 1079–1100, doi: 10.2113/gsecongeo.97.5.1079CrossRefGoogle Scholar
  78. Yang Kaihui, Scott S D. 2005. Vigorous exsolution of volatiles in the magma chamber beneath a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific: evidence from melt inclusions. Economic Geology, 100(6): 1085–1096, doi: 10.2113/gsecongeo.100.6.1085CrossRefGoogle Scholar
  79. Yang Kaihui, Scott S D. 2006. Magmatic fluids as a source of metals in seafloor hydrothermal systems. In: Christie D M, Fischer C R, Lee S M, et al., eds. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. New York: American Geophysical Union, 166: 163–184Google Scholar
  80. Yeats C J, Parr J M, Binns R A, et al. 2014. The SuSu Knolls hydrothermal field, eastern Manus Basin, Papua New Guinea: an Active submarine high-sulfidation copper-gold system. Economic Geology, 109(8): 2207–2226, doi: 10.2113/econgeo.109.8.2207CrossRefGoogle Scholar
  81. Zajacz Z, Halter W. 2009. Copper transport by high temperature, sulfur-rich magmatic vapor: evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile). Earth and Planetary Science Letters, 282(1-4): 115–121, doi: 10.1016/j.epsl.2009.03.006CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yao Ma
    • 1
    • 2
    Email author
  • Xiaoyuan Wang
    • 1
    • 2
  • Shuai Chen
    • 1
    • 2
  • Xuebo Yin
    • 1
  • Bowen Zhu
    • 1
    • 3
  • Kun Guo
    • 1
    • 2
    • 4
  • Zhigang Zeng
    • 1
    • 2
    • 3
  1. 1.Key Laboratory of Marine Geology and Environment, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Laboratory for Marine Mineral ResourcesPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Ocean Science Isotope and Geochronology CenterPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina

Personalised recommendations