Acta Oceanologica Sinica

, Volume 38, Issue 9, pp 48–58 | Cite as

Assessment of Arctic sea ice simulations in CMIP5 models using a synthetical skill scoring method

  • Liping Wu
  • Xiao-Yi YangEmail author
  • Jianyu Hu


The Arctic sea ice cover has declined at an unprecedented pace since the late 20th century. As a result, the feedback of sea ice anomalies for atmospheric circulation has been increasingly evidenced. While climatic models almost consistently reproduced a decreasing trend of sea ice cover, the reported results show a large distribution. To evaluate the performance of models for simulating Arctic sea ice cover and its potential role in climate change, this study constructed a reasonable metric by synthesizing both linear trends and anomalies of sea ice. This study particularly focused on the Barents Sea and the Kara Sea, where sea ice anomalies have the highest potential to affect the atmosphere. The investigated models can be grouped into three categories according to their normalized skill scores. The strong contrast among the multi-model ensemble means of different groups demonstrates the robustness and rationality of this method. Potential factors that account for the different performances of climate models are further explored. The results show that model performance depends more on the ozone datasets that are prescribed by the model rather than on the chemical representation of ozone.

Key words

Arctic sea ice climate model Barents and Kara Seas multi-model ensemble mean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the climate modelling groups, the World Climate Research Programme’s (WCRP) Working Group on Coupled Modelling (WGCM), and the Met Office Hadley Centre’s sea ice for the open datasets used in this study.


  1. Alexeev V A, Langen P L, Bates J R. 2005. Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Climate Dynamics, 24(7–8): 655–666, doi: 10.1007/s00382-005-0018-3CrossRefGoogle Scholar
  2. Arzel O, Fichefet T, Goosse H. 2006. Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Modelling, 12(3–4): 401–415, doi: 10.1016/j.ocemod.2005. 08.002CrossRefGoogle Scholar
  3. Bengtsson L, Semenov V A, Johannessen O M. 2004. The early twentieth-century warming in the Arctic—a possible mechanism. Journal of Climate, 17(20): 4045–4057, doi: 10.1175/1520-0442(2004)017<4045:TETWIT>2.0.CO;2CrossRefGoogle Scholar
  4. Chapman W L, Walsh J E. 2007. Simulations of arctic temperature and pressure by global coupled models. Journal of Climate, 20(4): 609–632, doi: 10.1175/jcli4026.1CrossRefGoogle Scholar
  5. Deser C, Tomas R, Alexander M, et al. 2010. The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. Journal of Climate, 23(2): 333–351, doi: 10.1175/2009JCLI3053.1CrossRefGoogle Scholar
  6. Eyring V, Arblaster J M, Cionni I, et al. 2013. Long-term ozone changes and associated climate impacts in CMIP5 simulations. Journal of Geophysical Research: Atmospheres, 118(10): 5029–5060, doi: 10.1002/jgrd.50316Google Scholar
  7. Francis J A, Chan Weihan, Leathers D J, et al. 2009. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophysical Research Letters, 36(7): L07503, doi: 10.1029/2009gl037274CrossRefGoogle Scholar
  8. Francis J A, Vavrus S J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters, 39(6): L06801, doi: 10.1029/2012gl051000CrossRefGoogle Scholar
  9. Graversen R G, Mauritsen T, Tjernström M, et al. 2008. Vertical structure of recent Arctic warming. Nature, 451(7174): 53–56, doi: 10.1038/nature06502CrossRefGoogle Scholar
  10. Holland M M, Bitz C M. 2003. Polar amplification of climate change in coupled models. Climate Dynamics, 21(3–4): 221–232, doi: 10.1007/s00382-003-0332-6CrossRefGoogle Scholar
  11. Huang Fei, Zhou Xiao, Wang Hong. 2017. Arctic sea ice in CMIP5 climate model projections and their seasonal variability. Acta Oceanologica Sinica, 36(8): 1–8, doi: 10.1007/s13131-017-1029-8CrossRefGoogle Scholar
  12. Kim K Y, Hamlington B D, Na Hanna, et al. 2016. Mechanism of seasonal Arctic sea ice evolution and Arctic amplification. The Cryosphere, 10(5): 2191–2202, doi: 10.5194/tc-10-2191-2016CrossRefGoogle Scholar
  13. Lamarque J F, Bond T C, Eyring V, et al. 2010. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics, 10(15): 7017–7039, doi: 10.5194/acpd-10-4963-2010CrossRefGoogle Scholar
  14. Lamarque J F, Kyle G P, Meinshausen M, et al. 2011. Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Climate Change, 109: 191–212, doi: 10.1007/s10584-011-0155-0CrossRefGoogle Scholar
  15. Li Dawei, Zhang Rong, Knutson T R. 2017. On the discrepancy between observed and CMIP5 multi-model simulated Barents Sea winter sea ice decline. Nature Communications, 8: 14991, doi: 10.1038/ncomms14991CrossRefGoogle Scholar
  16. Liu Jiping, Song Mirong, Horton R M, et al. 2013. Reducing spread in climate model projections of a September ice-free Arctic. Proceedings of the National Academy of Sciences of the United States of America, 110(31): 12571–12576, doi: 10.1073/pnas. 1219716110CrossRefGoogle Scholar
  17. Maslowski W, Clement K J, Higgins M, et al. 2012. The future of Arctic sea ice. Annual Review of Earth and Planetary Sciences, 40: 625–654, doi: 10.1146/annurev-earth-042711-105345CrossRefGoogle Scholar
  18. Massonnet F, Fichefet T, Goosse H, et al. 2012. Constraining projections of summer Arctic sea ice. The Cryosphere, 6(6): 1383–1394, doi: 10.5194/tc-6-1383-2012CrossRefGoogle Scholar
  19. Overland J E, Adams J M, Bond N A. 1997. Regional variation of winter temperatures in the Arctic. Journal of Climate, 10(5): 821–837, doi: 10.1175/1520-0442(1997)010<0821:RVOWTI>2.0.CO;2CrossRefGoogle Scholar
  20. Petoukhov V, Semenov V A. 2010. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. Journal of Geophysical Research: Atmospheres, 115(D21): D21111, doi: 10.1029/2009jd013568CrossRefGoogle Scholar
  21. Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14): 1063–1082, doi: 10.1029/2002JD002670CrossRefGoogle Scholar
  22. Rogers K G, Goodbred S L Jr, Mondal D R. 2013. Monsoon sedimentation on the ‘abandoned’ tide-influenced Ganges-Brahmaputra delta plain. Estuarine, Coastal and Shelf Science, 131: 297–309, doi: 10.1016/j.ecss.2013.07.014CrossRefGoogle Scholar
  23. Rosenblum E, Eisenman I. 2016. Faster Arctic sea ice retreat in CMIP5 than in CMIP3 due to volcanoes. Journal of Climate, 29(24): 9179–9188, doi: 10.1175/JCLI-D-16-0391.1CrossRefGoogle Scholar
  24. Ruggieri P, Buizza R, Visconti G. 2016. On the link between Barents-Kara sea ice variability and European blocking. Journal of Geophysical Research: Atmospheres, 121(10): 5664–5679, doi: 10.1002/2015jd024021Google Scholar
  25. Screen J A, Simmonds I. 2010a. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293): 1334–1337, doi: 10.1038/nature09051CrossRefGoogle Scholar
  26. Screen J A, Simmonds I. 2010b. Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophysical Research Letters, 37(16): L16707, doi: 10.1029/2010GL044136CrossRefGoogle Scholar
  27. Semenov M A. 2008. Simulation of extreme weather events by a stochastic weather generator. Climate Research, 35(3): 203–212, doi: 10.3354/cr00731CrossRefGoogle Scholar
  28. Semenov V A, Bengtsson L. 2003. Modes of the wintertime Arctic temperature variability. Geophysical Research Letters, 30(15): 1787, doi: 10.1029/2003gl017112CrossRefGoogle Scholar
  29. Semenov M A, Halford N G. 2009. Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. Journal of Experimental Botany, 60(10): 2791–2804, doi: 10.1093/jxb/erp164CrossRefGoogle Scholar
  30. Semenov V A, Martin T, Behrens L K, et al. 2015. Arctic sea ice area in CMIP3 and CMIP5 climate model ensembles — variability and change. The Cryosphere Discussions, 9(1): 1077–1131, doi: 10.5194/tcd-9-1077-2015CrossRefGoogle Scholar
  31. Serreze M, Barrett A, Stroeve J, et al. 2009. The emergence of surface-based Arctic amplification. The Cryosphere, 3: 11–19, doi: 10.5194/tc-3-11-2009CrossRefGoogle Scholar
  32. Shu Qi, Song Zhenya, Qiao Fangli. 2015. Assessment of sea ice simulations in the CMIP5 models. The Cryosphere, 9(1): 399–409, doi: 10.5194/tc-9-399-2015CrossRefGoogle Scholar
  33. Sigmond M, Fyfe J C. 2010. Has the ozone hole contributed to increased Antarctic sea ice extent?. Geophysical Research Letters, 37(18): L18520, doi: 10.1029/2010gl044301CrossRefGoogle Scholar
  34. Smedsrud L H, Esau I, Ingvaldsen R B, et al. 2013. The role of the Barents Sea in the Arctic climate system. Review of Geophysics, 51(3): 415–449, doi: 10.1002/rog.20017CrossRefGoogle Scholar
  35. Stroeve J C, Notz D. 2015. Insights on past and future sea-ice evolution from combining observations and models. Global and Planetary Change, 135: 119–132, doi: 10.1016/j.gloplacha. 2015.10.011CrossRefGoogle Scholar
  36. Stroeve J C, Serreze M C, Holland M M, et al. 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110(3–4): 1005–1027, doi: 10.1007/s10584-011-0101-1CrossRefGoogle Scholar
  37. Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4): 485–498, doi: 10.1175/BAMS-D-11-00094.1CrossRefGoogle Scholar
  38. Turner J, Comiso J C, Marshall G J, et al. 2009. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophysical Research Letters, 36(8): L08502, doi: 10.1029/2009GL037524CrossRefGoogle Scholar
  39. Venegas S A, Mysak L A. 2000. Is there a dominant timescale of natural climate variability in the Arctic?. Journal of Climate, 13(19): 3412–3434, doi: 10.1175/1520-0442(2000)013<3412:ITADTO>2.0.CO;2CrossRefGoogle Scholar
  40. Walsh J E. 2014. Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global and Planetary Change, 117: 52–63, doi: 10.1016/j.gloplacha.2014.03.003CrossRefGoogle Scholar
  41. Warner J C, Geyer W R, Lerczak J A. 2005. Numerical modeling of an estuary: A comprehensive skill assessment. Journal of Geophysical Research: Oceans, 110(C5): C05001, doi: 10.1029/2004JC002691CrossRefGoogle Scholar
  42. Willmott C J. 1981. On the validation of models. Physical Geography, 2(2): 184–194, doi: 10.1080/02723646.1981.10642213CrossRefGoogle Scholar
  43. Yang Xiaoyi, Yuan Xiaojun. 2014. The early winter sea ice variability under the recent Arctic climate shift. Journal of Climate, 27(13): 5092–5110, doi: 10.1175/jcli-d-13-00536.1CrossRefGoogle Scholar
  44. Yang Xiaoyi, Yuan Xiaojun, Ting Mingfang. 2016. Dynamical link between the Barents-Kara sea ice and the Arctic Oscillation. Journal of Climate, 29: 5103–5122, doi: 10.1175/JCLI-D-15-0669.1CrossRefGoogle Scholar
  45. Zhang Xiangdong, Walsh J E. 2006. Toward a seasonally ice-covered Arctic Ocean: Scenarios from the IPCC AR4 model simulations. Journal of Climate, 19(9): 1730–1747, doi: 10.1175/JCLI3767.1CrossRefGoogle Scholar
  46. Zunz V, Goosse H, Massonnet F. 2013. How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent?. The Cryosphere, 7(2): 451–468, doi: 10.5194/tc-7-451-2013CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Marine Environmental Science, College of Ocean and Earth SciencesXiamen UniversityXiamenChina
  2. 2.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)ZhuhaiChina

Personalised recommendations