Advertisement

Acta Oceanologica Sinica

, Volume 37, Issue 12, pp 97–106 | Cite as

Phytoplankton pigment pattern in the subsurface chlorophyll maximum in the South Java coastal upwelling system, Indonesia

  • Chunlei Gao
  • Mingzhu Fu
  • Hongjun Song
  • Lei Wang
  • Qinsheng Wei
  • Ping Sun
  • Lin Liu
  • Xuelei Zhang
Article
  • 3 Downloads

Abstract

Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a (Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates, prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids (PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.

Key words

Java upwelling phytoplankton pigment HPLC subsurface chlorophyll maximum CHEMTAX size structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed A, Kurian S, Gauns M, et al. 2016. Spatial variability in phytoplankton community structure along the eastern Arabian Sea during the onset of south-west monsoon. Cont Shelf Res, 119: 30–39, doi: 10.1016/j.csr.2016.03.005CrossRefGoogle Scholar
  2. Araujo M L V, Mendes C R B, Tavano V M, et al. 2017. Contrasting patterns of phytoplankton pigments and chemotaxonomic groups along 30°S in the subtropical South Atlantic Ocean. Deep-Sea Res Part I, 120: 112–121, doi: 10.1016/j.dsr.2016. 12.004CrossRefGoogle Scholar
  3. Barlow R G, Aiken J, Holligan P M, et al. 2002. Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean. Deep-Sea Res Part I, 49(4): 637–660, doi: 10.1016/S0967-0637(01)00081-4CrossRefGoogle Scholar
  4. Barlow R, Gibberd M J, Lamont T, et al. 2016. Chemotaxonomic phytoplankton patterns on the eastern boundary of the Atlantic Ocean. Deep-Sea Res Part I, 111: 73–78, doi: 10.1016/j.dsr.2016.02.011CrossRefGoogle Scholar
  5. Barlow R, Kyewalyanga M, Sessions H, et al. 2008. Phytoplankton pigments, functional types, and absorption properties in the Delagoa and Natal Bights of the Agulhas ecosystem. Estuar Coast Shelf Sci, 80(2): 201–211, doi: 10.1016/j.ecss.2008.07.022CrossRefGoogle Scholar
  6. Barlow R, Stuart V, Lutz V, et al. 2007. Seasonal pigment patterns of surface phytoplankton in the subtropical southern hemisphere. Deep-Sea Res Part I, 54(10): 1687–1703, doi: 10.1016/j.dsr. 2007.06.010CrossRefGoogle Scholar
  7. Bonachela J A, Klausmeier C A, Edwards K F, et al. 2016. The role of phytoplankton diversity in the emergent oceanic stoichiometry. Journal of Plankton Research, 38(4): 1021–1035, doi: 10.1093/plankt/fbv087CrossRefGoogle Scholar
  8. Brunet C, Johnsen G, Lavaud J, et al. 2011. Pigments and photoacclimation processes. In: Roy S, Llewellyn C A, Egeland E S, et al, eds. Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography. Cambridge: Cambridge University Press, 445–471CrossRefGoogle Scholar
  9. Chai Chao, Jiang Tao, Cen Jingyi, et al. 2016. Phytoplankton pigments and functional community structure in relation to environmental factors in the Pearl River Estuary. Oceanologia, 58(3): 201–211, doi: 10.1016/j.oceano.2016.03.001CrossRefGoogle Scholar
  10. Falkowski P G, Raven J A. 1997. Aquatic Photosynthesis. Oxford: BlackwellGoogle Scholar
  11. Gibb S W, Barlow R G, Cummings D G, et al. 2000. Surface phytoplankton pigment distributions in the Atlantic Ocean: an assessment of basin scale variability between 50°N and 50°S. Prog Oceanogr, 45(3–4): 339–368CrossRefGoogle Scholar
  12. Gieskes W W C, Kraay G W, Nontji A, et al. 1988. Monsoonal alternation of a mixed and a layered structure in the phytoplankton of the euphotic zone of the Banda Sea (Indonesia): a mathematical analysis of algal pigment fingerprints. Netherlands Journal of Sea Research, 22(2): 123–137, doi: 10.1016/0077-7579(88) 90016-6CrossRefGoogle Scholar
  13. Grasshoff K, Kremling K, Ehrhardt M. 1999. Methods of Seawater Analysis. 3rd ed. Weinheim: Wiley-VCH, 365–371CrossRefGoogle Scholar
  14. Higgins H W, Wright S W, Schlüter L. 2011. Quantitative interpretation of chemotaxonomic pigment data. In: Roy S, Llewellyn C A, Egeland E S, et al, eds. Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography. Cambridge: Cambridge University Press, 257–313CrossRefGoogle Scholar
  15. Horii T, Ueki I, Syamsudin F, et al. 2016. Intraseasonal coastal upwelling signal along the southern coast of Java observed using Indonesian tidal station data. J Geophys Res Oceans, 121(4): 2690–2708, doi: 10.1002/2015JC010886CrossRefGoogle Scholar
  16. Isada T, Hirawake T, Nakada S, et al. 2017. Influence of hydrography on the spatiotemporal variability of phytoplankton assemblages and primary productivity in Funka Bay and the Tsugaru Strait. Estuar Coast Shelf S, 188: 199–211, doi: 10.1016/j.ecss.2017.02.019CrossRefGoogle Scholar
  17. Iskandar I, Rao S A, Tozuka T. 2009. Chlorophyll—a bloom along the southern coasts of Java and Sumatra during 2006. Int J Remote Sens, 30(3): 663–671, doi: 10.1080/01431160802372309CrossRefGoogle Scholar
  18. Iskandar I, Sasaki H, Sasai Y, et al. 2010. A numerical investigation of eddy-induced chlorophyll bloom in the southeastern tropical Indian Ocean during Indian Ocean Dipole-2006. Ocean Dyn, 60(3): 731–742, doi: 10.1007/s10236-010-0290-6CrossRefGoogle Scholar
  19. Jeffrey S W, Wright S W, Zapata M. 2011. Microalgal classes and their signature pigments. In: Roy S, Llewellyn C A, Egeland E S, et al, eds. Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography. Cambridge: Cambridge University Press, 3–77CrossRefGoogle Scholar
  20. Kuswardani R T D, Qiao Fangli. 2014. Influence of the Indonesian Throughflow on the upwelling off the east coast of South Java. Chin Sci Bull, 59(33): 4516–4523, doi: 10.1007/s11434-014-0549-2CrossRefGoogle Scholar
  21. Lutz V A, Sathyendranath S, Head E J H, et al. 2003. Variability in pigment composition and optical characteristics of phytoplankton in the Labrador Sea and the Central North Atlantic. Mar Ecol Progr Ser, 260: 1–18, doi: 10.3354/meps260001CrossRefGoogle Scholar
  22. Mackey M D, Mackey D J, Higgins H W, et al. 1996. CHEMTAX-a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Progr Ser, 144: 265–283, doi: 10.3354/meps144265CrossRefGoogle Scholar
  23. Madhu N V, Ullas N, Ashwini R, et al. 2014. Characterization of phytoplankton pigments and functional community structure in the Gulf of Mannar and the Palk Bay using HPLC-CHEMTAX a n a l y s i s. C o n t i n e n t a l S h e l f R e s e a r c h, 80: 79–90, d o i: 10.1016/j.csr.2014.03.004Google Scholar
  24. Marañón E. 2015. Cell size as a key determinant of phytoplankton metabolism and community structure. Ann Rev Mar Sci, 7: 241–264, doi: 10.1146/annurev-marine-010814-015955CrossRefGoogle Scholar
  25. Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta, 1(4): 493–509Google Scholar
  26. Mendes C R B, Odebrecht C, Tavano V M, et al. 2016. Pigment-based chemotaxonomy of phytoplankton in the Patos Lagoon estuary (Brazil) and adjacent coast. Mar Biol Res, 13(1): 22–35, doi: 10.1080/17451000.2016.1189082CrossRefGoogle Scholar
  27. Moreno D V, Marrero J P, Morales J, et al. 2012. Phytoplankton functional community structure in Argentinian continental shelf determined by HPLC pigment signatures. Estuar Coast Shelf Sci, 100: 72–81, doi: 10.1016/j.ecss.2012.01.007CrossRefGoogle Scholar
  28. Paerl H W, Justić D. 2011. Primary producers: phytoplankton ecology and trophic dynamics in coastal waters. In: Wolanski E, McLusky D, eds. Treatise on Estuarine and Coastal Science. Amsterdam: Elsevier, 23–42CrossRefGoogle Scholar
  29. Porra R J, Pfündel E E, Engel N. 1997. Metabolism and function of photosynthetic pigments. In: Jeffrey S W, Mantoura R F C, Wright S W, eds. Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Paris: UNESCO Publishing, 85–126Google Scholar
  30. Ras J, Claustre H, Uitz J. 2008. Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data. Biogeosciences, 5(2): 353–369, doi: 10.5194/bg-5-353-2008CrossRefGoogle Scholar
  31. Raven J A. 1998. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct Ecol, 12(4): 503–513, doi: 10.1046/j.1365-2435.1998.00233.xGoogle Scholar
  32. Reddy P R C, Salvekar P S. 2008. Phytoplankton blooms induced/sustained by cyclonic eddies during the Indian Ocean Dipole event of 1997 along the southern coasts of Java and Sumatra. Biogeosciences Discussion, 5(5): 3905–3918, doi: 10.5194/bgd-5-3905-2008CrossRefGoogle Scholar
  33. Sartimbul A, Nakata H, Rohadi E, et al. 2010. Variations in chlorophyll-a concentration and the impact on Sardinella lemuru catches in Bali Strait, Indonesia. Prog Oceanogr, 87(1–4): 168–174CrossRefGoogle Scholar
  34. Schlüter L, Henriksen P, Nielsen T G, et al. 2011. Phytoplankton composition and biomass across the southern Indian Ocean. Deep-Sea Res Part I, 158(5): 546–556CrossRefGoogle Scholar
  35. Susanto R D, Gordon A L, Zheng Quanan. 2001. Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophys Res Lett, 28(8): 1599–1602, doi: 10.1029/2000GL011844CrossRefGoogle Scholar
  36. Susanto R D, Marra J. 2005. Effect of the 1997/98 El Niño on Chlorophyll a variability along the southern coasts of Java and Sumatra. Oceanography, 18(4): 124–127, doi: 10.5670/oceanogCrossRefGoogle Scholar
  37. Swan C M, Vogt M, Gruber N, et al. 2016. A global seasonal surface ocean climatology of phytoplankton types based on CHEMTAX analysis of HPLC pigments. Deep-Sea Res Part I, 109: 137–156, doi: 10.1016/j.dsr.2015.12.002CrossRefGoogle Scholar
  38. Trees C C, Clark D K, Bidigare R R, et al. 2000. Accessory pigments versus chlorophyll a concentrations within the euphotic zone: a ubiquitous relationship. Limnol Oceanogr, 45(5): 1130–1143, doi: 10.4319/lo.2000.45.5.1130CrossRefGoogle Scholar
  39. Uitz J, Claustre H, Morel A, et al. 2006. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J Geophys Res, 111(C8): C08005, doi: 10.1029/2005JC003207Google Scholar
  40. Veldhuis M H W, Kraay G W. 2004. Phytoplankton in the subtropical Atlantic Ocean: towards a better assessment of biomass and composition. Deep-Sea Res Part I, 51(4): 507–530, doi: 10.1016/j.dsr.2003.12.002CrossRefGoogle Scholar
  41. Vidussi F, Claustre H, Manca B B, et al. 2001. Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. J Geophys Res, 106(C9): 19939–19956, doi: 10.1029/1999JC000308Google Scholar
  42. Wang Yu, Kang Jianhua, Ye Youyin, et al. 2016. Phytoplankton community and environmental correlates in a coastal upwelling zone along western Taiwan Strait. J Mar Syst, 154: 252–263, doi: 10.1016/j.jmarsys.2015.10.015CrossRefGoogle Scholar
  43. Wright S W, Ishikawa A, Marchant H J, et al. 2009. Composition and significance of picophytoplankton in Antarctic waters. Polar Biol, 32(5): 797–808, doi: 10.1007/s00300-009-0582-9CrossRefGoogle Scholar
  44. Wright S W, Jeffrey S W. 2006. Pigment markers for phytoplankton production. In: Volkman J K, ed. Marine Organic Matter: Biomarkers, Isotopes and DNA. Berlin: Springer, 71–104CrossRefGoogle Scholar
  45. Wyrtki K. 1962. The upwelling in the region between Java and Australia during the south-east monsoon. Australian Journal of Marine and Freshwater Research, 13(3): 217–225, doi: 10.1071/MF9620217CrossRefGoogle Scholar
  46. Xue Liang, Wang Huiwu, Jiang Liqing, et al. 2016. Aragonite saturation state in a monsoonal upwelling system off Java, Indonesia. J Mar Syst, 153: 10–17, doi: 10.1016/j.jmarsys.2015.08.003CrossRefGoogle Scholar
  47. Zapata M, Garrido J L. 1991. Influence of injection conditions in reversed-phase high-performance liquid chromatography of chlorophylls and carotenoids. Chromatographia, 31(11–12): 589–594CrossRefGoogle Scholar
  48. Zapata M, Jeffrey S W, Wright S W, et al. 2004. Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Mar Ecol Progr Ser, 270: 83–102, doi: 10.3354/meps270083CrossRefGoogle Scholar
  49. Zapata M, Rodríguez F, Garrido J L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Progr Ser, 195: 29–45, doi: 10.3354/meps195029CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chunlei Gao
    • 1
    • 2
    • 3
  • Mingzhu Fu
    • 1
    • 2
    • 3
  • Hongjun Song
    • 1
    • 2
    • 3
  • Lei Wang
    • 4
  • Qinsheng Wei
    • 1
    • 2
    • 3
  • Ping Sun
    • 1
    • 2
    • 3
  • Lin Liu
    • 1
  • Xuelei Zhang
    • 1
    • 2
    • 3
  1. 1.First Institute of OceanographyMinistry of Natural ResourcesQingdaoChina
  2. 2.Laboratory of Marine Ecology and Environmental SciencePilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
  3. 3.Key Laboratory of Science and Engineering for Marine Ecological EnvironmentMinistry of Natural ResourcesQingdaoChina
  4. 4.Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina

Personalised recommendations