Acta Oceanologica Sinica

, Volume 37, Issue 12, pp 45–54 | Cite as

Change in coral reef benthic communities in the Lembeh Strait and Likupang, North Sulawesi, Indonesia

  • Tri Aryono HadiEmail author
  • Jimmy Sihouka
  • Xiaofeng Shi
  • Agus Budiyanto
  • SuharsonoEmail author


Anthropogenic impacts and natural disturbances have been intense recently in the global scale, affecting the composition of coral reef benthic communities from coral to algal dominated reefs. However, this condition does not always occur considering corals are able to recover when the stressors falter. This study aims to investigate the change in coral reef benthic communities and the relationship among benthic categories. The study was carried out in 2014 and 2016 at five sites, three sites in the Lembeh Strait and two sites in Likupang, North Sulawesi Province. Underwater Photo Transect (UPT) was used at depth of around 4–6 m in slope areas. The result indicated that the benthic communities were slightly changing: the percent covers of hard corals, sponges, soft corals, macroalgae and substrate categories were not significantly different between the years but category of others, particularly seasonally growing hydroid, increased significantly, occupying the available substrates and overtopping other benthos surrounding. The study also found that there was a significant relationship between the change in benthic gradient and the number of hard coral colonies: when the composition becomes less complex, the number of colony declines. In contrast, the hard coral diversity remained unchanged, suggesting the coral reefs apparently have an ecological resilience (sustainable species diversity) against the change although ecological complexity declines. In addition, the hard coral cover was significantly correlated with soft coral and sponge covers, which did not change significantly among the years. In general, the coral reefs in North Sulawesi might experience a temporary blip due to the increasing percent cover of others, and be predicted to recover as there was no indication of soft corals and sponges to increase significantly. However, it is necessary to investigate the dynamic of benthic communities in different depth gradients to gain a comprehensive understanding as the communities respond differently to the light intensity.

Key words

coral reef benthic community percent cover Lembeh Strait Likupang 



This research was part of collaboration between Third Institute of Oceanography, China and Research Center for Oceanography, Indonesia. The authors acknowledge the financial support from both institutions. The authors also thank all of the staff at the Conservation Unit for Bitung Marine Life for logistic and technical supports during the field work.


  1. Ampou E E, Johan O, Menkes C E, et al. 2017. Coral mortality induced by the 2015–2016 El-Niño in Indonesia: the effect of rapid sea level fall. Biogesoscience, 14(4): 817–826, doi: 10.5194/bg-14-817-2017CrossRefGoogle Scholar
  2. Arifin T. 2007. Indeks keberlanjutan ekologi-teknologi ekosistem terumbu karang di selat lembeh, Kota Bitung. Journal Oseanologi dan Limnologi di Indonesia, 33(2): 307–323Google Scholar
  3. Aronson R, Precht W, Toscano M, et al. 2002. The 1998 bleaching event and its aftermath on a coral reef in Belize. Marine Biology, 141(3): 435–447, doi: 10.1007/s00227-002-0842-5CrossRefGoogle Scholar
  4. Australian Institute of Marine Science (AIMS). 2016. The facts on Great Barrier Reef coral mortality. Australia: Great Barrier Reef Marine Park Authority, 2Google Scholar
  5. Bachtiar I, Karnan D, Santoso L, et al. 2016. Monitoring kesehatan terumbu karang dan ekosistem terkait di Sekotong, Lombok Barat. Jakarta: COREMAP-CTI, 95Google Scholar
  6. Badan Meterorogi, Klimatologi, dan Geofisika (BMKG). 2016. Prakiraan musim hujan 2015/2016 di Indonesia. [2016-01-14/2018-02-16]Google Scholar
  7. Bak R P M, Nieuwland G. 1995. Long-term change in coral communities along depth gradients over leeward reefs in the Netherland Antilles. Bulletin of Marine Science, 56: 609–619Google Scholar
  8. Bak R P M, Nieuwland G, Meesters E H. 2005. Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire. Coral Reefs, 24(3): 475–479, doi: 10.1007/s00338-005-0009-1CrossRefGoogle Scholar
  9. Barott K L, Rohwer F L. 2012. Unseen players shape benthic competition on coral reefs. Trends in Microbiology, 20(12): 621–628, doi: 10.1016/j.tim.2012.08.004CrossRefGoogle Scholar
  10. Bell J J, Davy S K, Jones T, et al. 2013. Could some coral reefs become sponge reefs as our climate changes?. Global Change Biology, 19(9): 2613–2624, doi: 10.1111/gcb.2013.19.issue-9CrossRefGoogle Scholar
  11. Boero F. 1994. Fluctuations and variations in coastal marine environments. Marine Ecology, 15(1): 3–25, doi: 10.1111/j.1439-0485.1994.tb00038.xCrossRefGoogle Scholar
  12. Brander L M, Van Beukering P, Cesar H S J. 2007. The recreational value of coral reefs: a meta-analysis. Ecological Economics, 63(1): 209–218, doi: 10.1016/j.ecolecon.2006.11.002CrossRefGoogle Scholar
  13. Bruno J F, Selig E R. 2007. Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One, 2(8): e711, doi: 10.1371/journal.pone.0000711CrossRefGoogle Scholar
  14. Burke L, Selig E, Spalding M D, et al. 2012. Reefs at Risk Revisited in the Coral Triangle. Washington: World Resources Institute, 72Google Scholar
  15. Campbell S J, Pratchett M S, Anggoro A W, et al. 2007. Disturbance to coral reefs in Aceh, northern Sumatra: impacts of the Sumatra-Andaman tsunami and pre-tsunami degradation. Atoll Research Bulletin, 544: 55–78Google Scholar
  16. Cappenberg S H, Manuputty A, Souhoka J, et al. 2016. Monitoring kesehatan terumbu karang dan ekosistem terkait di Pulau Ternate dan sekitarnya. Jakarta: COREMAP-CTI, 86Google Scholar
  17. Carpenter K E, Abrar M, Aeby G, et al. 2008. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science, 321(5888): 560–563, doi: 10.1126/science. 1159196CrossRefGoogle Scholar
  18. Ceccarelli D M, Richards Z T, Pratchett M S, et al. 2011. Rapid increase in coral cover on an isolated coral reef, the Ashmore Reef National Nature Reserve, north-western Australia. Marine and Freshwater Research, 62(10): 1214–1220, doi: 10.1071/MF11013CrossRefGoogle Scholar
  19. Chadwick N E, Morrow K M. 2011. Competition among sessile organisms on coral reefs. In: Dubinsky Z, Stambler N, eds. Coral Reefs: An Ecosystem in Transition. Netherlands: Springer, 347–371Google Scholar
  20. Chaves-Fonnegra A, Castellanos L, Zea S, et al. 2008. Clionapyrrolidine A—a metabolite from the encrusting and excavating sponge Cliona tenuis that kills coral tissue upon contact. Journal of Chemical Ecology, 34(12): 1565–1574, doi: 10.1007/s10886-008-9565-5CrossRefGoogle Scholar
  21. Cheal A J, MacNeil M A, Cripps E, et al. 2010. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs, 29(4): 1005–1015, doi: 10.1007/s00338-010-0661-yCrossRefGoogle Scholar
  22. De Voogd N J, Cleary D F R. 2008. An analysis of sponge diversity and distribution at three taxonomic levels in the Thousand Islands/Jakarta Bay reef complex, West-Java, Indonesia. Marine Ecology, 29(2): 205–215, doi: 10.1111/mae.2008.29.issue-2CrossRefGoogle Scholar
  23. De’ath G, Fabricius K. 2010. Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecological Applications, 20(3): 840–850, doi: 10.1890/08-2023.1CrossRefGoogle Scholar
  24. De’ath G, Fabricius K E, Sweatman H, et al. 2012. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences of the United States of America, 109(44): 17995–17999, doi: 10.1073/pnas. 1208909109CrossRefGoogle Scholar
  25. DeVantier L M, De’ath G, Turak E, et al. 2006. Species richness and community structure of reef-building corals on the nearshore Great Barrier Reef. Coral Reefs, 25(3): 329–340, doi: 10.1007/s00338-006-0115-8CrossRefGoogle Scholar
  26. Di Camillo C G, Bavestrello G, Valisano L, et al. 2008. Spatial and temporal distribution in a tropical hydroid assemblage. Journal of the Marine Biological Association of the United Kingdom, 88(8): 1589–1599, doi: 10.1017/S0025315408002981CrossRefGoogle Scholar
  27. Dinesen Z D. 1983. Patterns in the distribution of soft corals across the central Great Barrier Reef. Coral Reefs, 1(4): 229–236, doi: 10.1007/BF00304420CrossRefGoogle Scholar
  28. Fabricius K, De’ath G, McCook L, et al. 2005. Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Marine Pollution Bulletin, 51(1–4): 384–398CrossRefGoogle Scholar
  29. Gerung G S, Roeroe K A, Rondonuwu A B, et al. 2016. Study monitoring kesehatan terumbu karang dan ekosistem terkait lainnya di perairan Pulau Salawati dan Pulau Bantata, Kabupaten Raja Ampat, Papua Barat. Jakarta: COREMAP-CTI, 126Google Scholar
  30. Gilmour J P, Smith L D, Heyward A J, et al. 2013. Recovery of an isolated coral reef system following severe disturbance. Science, 340(6128): 69–71, doi: 10.1126/science.1232310CrossRefGoogle Scholar
  31. Giyanto. 2012a. Kajian tentang panjang transek dan jarak antar pemotretan pada penggunaan metode transek foto bawah air. Oseanologi dan Limnologi di Indonesia, 38(1): 1–18Google Scholar
  32. Giyanto. 2012b. Penilaian kondisi terumbu karang dengan metode transek foto bawah air. Oseanologi dan Limnologi di Indonesia, 38(3): 377–389Google Scholar
  33. Giyanto Rizki S U, Agus B, et al. 2016. Monitoring kesehatan terumbu karang dan ekosistem terkait di Kabupaten Biak Numfor. Jakarta: COREMAP-CTI, 99Google Scholar
  34. Giyanto B H I, Soedharma D, Suharsono. 2010. Effisiensi dan akurasi pada proses analisis foto bawah air untuk menilai kondisi terumbu karang. Oseanologi dan Limnologi di Indonesia, 36(1): 111–130Google Scholar
  35. Goffredo S, Piccinetti C, Zaccanti F. 2007. Tsunami survey expedition: preliminary investigation of Maldivian coral reefs two weeks after the event. Environmental Monitoring and Assessment, 131(1–3): 95–105CrossRefGoogle Scholar
  36. Graham N A, Wilson S K, Jennings S, et al. 2006. Dynamic fragility of oceanic coral reef ecosystems. Proceedings of the National Academy of Sciences, 103(22): 8425–8429, doi: 10.1073/pnas. 0600693103CrossRefGoogle Scholar
  37. Gravier-Bonnet N, Bourmaud C A. 2006. Hydroids (Cnidaria, Hydrozoa) of coral reefs: preliminary results on community structure, species distribution and reproductive biology in Juan de Nova Island (Southwest Indian Ocean). Western Indian Ocean Journal of Marine Science, 5(2): 123–132Google Scholar
  38. Hermanto B. 2013. Keragaman karang jamur (Fungiidae) di Perairan Pulau Siladen, Minahasa Utara. Jurnal Ilmiah Platax, 1(4): 158–166Google Scholar
  39. Hughes T P, Rodrigues M J, Bellwood D R, et al. 2007. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Current Biology, 17(4): 360–365, doi: 10.1016/j.cub.2006.12.049CrossRefGoogle Scholar
  40. Huston M A. 1985. Patterns of species diversity on coral reefs. Annual Review of Ecology and Systematics, 16: 149–177, doi: 10.1146/ Scholar
  41. Karlson R H, Cornell H V, Hughes T P. 2004. Coral communities are regionally enriched along an oceanic biodiversity gradient. Nature, 429(6994): 867–870, doi: 10.1038/nature02685CrossRefGoogle Scholar
  42. Knowlton N, Jackson J B C. 2008. Shifting baselines, local impacts, and global change on coral reefs. PLoS Biology, 6(2): e54, doi: 10.1371/journal.pbio.0060054CrossRefGoogle Scholar
  43. Kohler K E, Gill S M. 2006. Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geosciences, 32(9): 1259–1269CrossRefGoogle Scholar
  44. Kulkarni S, Patankar V, D’souza E, et al. 2008. Status of earthquake and tsunmi affected coral reefs in Andaman Nicobar Islands, India. Coral Oceans Research and Development in the Indian Ocean: Status Report 2008. Mombasa: Coastal Oceans research and Development in the Indian Ocean Cordio East Africa, 173–183Google Scholar
  45. Ledlie M H, Graham N A J, Bythell J C, et al. 2007. Phase shifts and the role of herbivory in the resilience of coral reefs. Coral Reefs, 26(3): 641–653, doi: 10.1007/s00338-007-0230-1CrossRefGoogle Scholar
  46. Lesser M P, Slattery M, Leichter J J. 2009. Ecology of mesophotic coral reefs. Journal of Experimental Marine Biology and Ecology, 375(1–2): 1–8CrossRefGoogle Scholar
  47. Maida M, Sammarco P W, Coll J C. 2001. Effects of soft corals on scleractinian coral recruitment. II: Allelopathy, spat survivorship and reef community structure. Marine Ecology, 22(4): 397–414, doi: 10.1046/j.1439-0485.2001.01709.xGoogle Scholar
  48. Manembu I, Adrianto L, Bengen D G, et al. 2012. Distribusi karang dan ikan karang di kawasan reef ball Teluk Buyat Kabupaten Minahasa Tenggara. Jurnal Perikanan dan Kelautan Tropis, 8(1): 28–32Google Scholar
  49. Mass T, Genin A, Shavit U, et al. 2010. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proceedings of the National Academy of Sciences of the United States of America, 107(6): 2527–2531, doi: 10.1073/pnas.0912348107CrossRefGoogle Scholar
  50. McCook L J, Ayling T, Cappo M, et al. 2010. Adaptive management of the Great Barrier Reef: a globally significant demonstration of the benefits of networks of marine reserves. Proceedings of the National Academy of Sciences of the United States of America, 107(43): 18278–18285, doi: 10.1073/pnas.0909335107CrossRefGoogle Scholar
  51. McMurray S E, Blum J E, Leichter J J, et al. 2011. Bleaching of the giant barrel sponge Xestospongia muta in the Florida Keys. Limnology and Oceanography, 56(6): 2243–2250, doi: 10.4319/lo. 2011.56.6.2243CrossRefGoogle Scholar
  52. Moberg F, Folke C. 1999. Ecological goods and services of coral reef ecosystems. Ecological Economics, 29(2): 215–233, doi: 10.1016/S0921-8009(99)00009-9CrossRefGoogle Scholar
  53. Monismith S G. 2007. Hydrodynamics of coral reefs. Annual Review of Fluid Mechanics, 39: 37–55, doi: 10.1146/annurev.fluid. 38.050304.092125CrossRefGoogle Scholar
  54. Nakamura T, Van Woesik R. 2001. Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Marine Ecology Progress Series, 212: 301–304, doi: 10.3354/meps212301CrossRefGoogle Scholar
  55. Nyström M, Graham N A J, Lokrantz J, et al. 2008. Capturing the cornerstones of coral reef resilience: linking theory to practice. Coral Reefs, 27(4): 795–809, doi: 10.1007/s00338-008-0426-zCrossRefGoogle Scholar
  56. Ostrander G K, Armstrong K M, Knobbe E T, et al. 2000. Rapid transition in the structure of a coral reef community: the effects of coral bleaching and physical disturbance. Proceedings of the National Academy of Sciences, 97(10): 5297–5302, doi: 10.1073/pnas.090104897CrossRefGoogle Scholar
  57. Pawlik J R, Steindler L, Henkel T P, et al. 2007. Chemical warfare on coral reefs: Sponge metabolites differentially affect coral symbiosis in situ. Limnology and Oceanography, 52(2): 907–911, doi: 10.4319/lo.2007.52.2.0907CrossRefGoogle Scholar
  58. Pramudji. 2016. Laporan monitoring kesehatan terumbu karang dan ekosistem terkait di Perairan Kendari. Jakarta: COREMAP-CTI, 77Google Scholar
  59. Putra E H, Handoyo E W. 2013. Kajian teknis penggunaan citra satelit EO-1 Hyperion untuk pemetaan habitat terumbu karang di pesisir utara taman nasional bunaken. Info BPK Manado, 3(1): 65–78Google Scholar
  60. Sheppard C R C, Harris A, Sheppard A L S. 2008. Archipelago-wide coral recovery patterns since 1998 in the Chagos Archipelago, central Indian Ocean. Marine Ecology Progress Series, 362: 109–117, doi: 10.3354/meps07436CrossRefGoogle Scholar
  61. Shulman M J, Robertson D R. 1996. Changes in the coral reefs of San Blas, Caribbean Panama: 1983 to 1990. Coral reefs, 15(4): 231–236, doi: 10.1007/BF01787457CrossRefGoogle Scholar
  62. Siringoringo R M, Hadi T A. 2015. Diversity of stony corals in Banggai Water. Marine Research in Indonesia, 38(1): 9–19, doi: 10.14203/mri.v38i1.52CrossRefGoogle Scholar
  63. Siringoringo R M, Palupi R D, Hadi T A. 2012. Biodiversitas Karang batu (scleractinia) di Perairan Kendari. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 17(1): 22–30, doi: 10.14710/ik.ijms.17.1.22-30CrossRefGoogle Scholar
  64. Smith L D, Gilmour J P, Heyward A J. 2008. Resilience of coral communities on an isolated system of reefs following catastrophic mass-bleaching. Coral Reefs, 27(1): 197–205, doi: 10.1007/s00338-007-0311-1CrossRefGoogle Scholar
  65. Souhoka J. 2004. Kondisi Terumbu Karang di Perairan Selat Lembeh, Sulawesi Utara. Oseanologi dan Limnologi di Indonesia, 36: 33–50Google Scholar
  66. Stobart B, Teleki K, Buckley R, et al. 2005. Coral recovery at Aldabra Atoll, Seychelles: five years after the 1998 bleaching event. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 363(1826): 251–255, doi: 10.1098/rsta.2004.1490CrossRefGoogle Scholar
  67. Suharsono. 2008. Jenis-jenis karang di Indonesia. Program COREMAP II-LIPI. Jakarta: LIPI Press, 372Google Scholar
  68. Thompson A A, Dolman A M. 2010. Coral bleaching: one disturbance too many for near-shore reefs of the Great Barrier Reef. Coral Reefs, 29(3): 637–648, doi: 10.1007/s00338-009-0562-0CrossRefGoogle Scholar
  69. Tomboelu N, Bengen D, Nikijuluw V, et al. 2000. Analisis kebijakan pengelolaan sumber daya terumbu karang di kawasan bunaken dan sekitarnya. Jurnal Pesisir dan Lautan, 3(1): 51–67Google Scholar
  70. Veron J E N. 2000a. Corals of the World. Vol 1. Townsville: AIMS, 463Google Scholar
  71. Veron J E N. 2000b. Corals of the World. Vol 2. Townsville: AIMS, 429Google Scholar
  72. Veron J E N. 2000c. Corals of the World. Vol 3. Townsville: AIMS, 490Google Scholar
  73. Veron J, Stafford-Smith M, DeVantier L, et al. 2015. Overview of distribution patterns of zooxanthellate Scleractinia. Frontiers in Marine Science, 1: 81CrossRefGoogle Scholar
  74. Ward-Paige C A, Risk M J, Sherwood O A, et al. 2005. Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. Marine Pollution Bulletin, 51(5–7): 570–579CrossRefGoogle Scholar
  75. Yosephine M I, Hadi T A, Utama R S, et al. 2016. Monitoring kesehatan terumbu karang dan ekosistem terkait di Kabupaten Wakatobi. Jakarta: COREMAP-CTI, 92Google Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center for OceanographyIndonesian Institute of SciencesJakartaIndonesia
  2. 2.Conservation Unit for Bitung Marine LifeIndonesian Institute of SciencesBitungIndonesia
  3. 3.Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina

Personalised recommendations