Advertisement

Acta Oceanologica Sinica

, Volume 37, Issue 12, pp 55–62 | Cite as

An ocean acidification-simulated system and its application in coral physiological studies

  • Xinqing ZhengEmail author
  • Chenying Wang
  • Tri Aryono Hadi
  • Youyin Ye
  • Ke PanEmail author
Article

Abstract

Due to the elevated atmospheric carbon dioxide, ocean acidification (OA) has recently emerged as a research theme in marine biology due to an expected deleterious effect of altered seawater chemistry on calcification. A system simulating future OA scenario is crucial for OA-related studies. Here, we designed an OA-simulated system (OASys) with three solenoid-controlled CO2 gas channels. The OASys can adjust the pH of the seawater by bubbling CO2 gas into seawaters via feedback systems. The OASys is very simple in structure with an integrated design and is new-user friendly with the instruction. Moreover, the OASys can monitor and record real-time pH values and can maintain pH levels within 0.02 pH unit. In a 15-d experiment, the OASys was applied to simulate OA in which the expected target pH values were 8.00, 7.80 and 7.60 to study the calcifying response of Galaxea fascicularis. The results showed daily mean seawater pH values held at pH 8.00±0.01, 7.80±0.01 and 7.61±0.01 over 15 d. Correspondingly, the coral calcification of G. fascicularis gradually decreased with reduced pH.

Key words

ocean acidification OASys coral Galaxea fascicularis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbasi T, Abbasi S A. 2011. Ocean acidification: the newest threat to the global environment. Critical Reviews in Environmental Science and Technology, 41(8): 1601–1663CrossRefGoogle Scholar
  2. Albright R, Langdon C. 2011. Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Global Change Biology, 17(7): 2478–2487, doi: 10.1111/j.1365-2486.2011.02404.xCrossRefGoogle Scholar
  3. Andersson A J, Kuffner I B, Mackenzie F T, et al. 2009. Net loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences, 6(8): 1811–1823, doi: 10.5194/bg-6-1811-2009CrossRefGoogle Scholar
  4. Anthony K R N, Kline D I, Diaz-Pulido G, et al. 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America, 105(45): 17442–17446, doi: 10.1073/pnas.0804478105CrossRefGoogle Scholar
  5. Barry J P, Lovera C, Okuda C, et al. 2008. A gas-controlled aquarium system for ocean acidification studies. In: OCEANS 2008-MTS/IEEE Kobe Techno-Ocean. Kobe, Japan: IEEE, 1–5Google Scholar
  6. Buddemeier R W, Jokiel P L, Zimmerman K M, et al. 2008. A modeling tool to evaluate regional coral reef responses to changes in climate and ocean chemistry. Limnology and Oceanography: Methods, 6(9): 395–411, doi: 10.4319/lom.2008.6.395Google Scholar
  7. Carreiro-Silva M, Cerqueira T, Godinho A, et al. 2014. Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification. Coral Reefs, 33(2): 465–476, doi: 10.1007/s00338-014-1129-2CrossRefGoogle Scholar
  8. Chauvin A, Denis V, Cuet P. 2011. Is the response of coral calcification to seawater acidification related to nutrient loading?. Coral Reefs, 30(4): 911–923, doi: 10.1007/s00338-011-0786-7CrossRefGoogle Scholar
  9. Codarin A, Wysocki L E, Ladich F, et al. 2009. Effects of ambient and boat noise on hearing and communication in three fish species living in a marine protected area (Miramare, Italy). Marine Pollution Bulletin, 58(12): 1880–1887, doi: 10.1016/j.marpolbul. 2009.07.011CrossRefGoogle Scholar
  10. Comeau S, Carpenter R C, Edmunds P J. 2013a. Response to coral reef calcification: carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification. Proceedings of the Royal Society B: Biological Sciences, 280(1764): 20131153, doi: 10.1098/rspb.2013.1153CrossRefGoogle Scholar
  11. Comeau S, Carpenter R C, Nojiri Y, et al. 2014a. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification. Proceedings of the Royal Society B: Biological Sciences, 281(1790): 20141339, doi: 10.1098/rspb.2014.1339CrossRefGoogle Scholar
  12. Comeau S, Edmunds P J, Spindel N B, et al. 2013b. The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnology and Oceanography, 58(1): 388–398, doi: 10.4319/lo.2013.58.1.0388CrossRefGoogle Scholar
  13. Comeau S, Edmunds P J, Spindel N B, et al. 2014b. Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations. Limnology and Oceanography, 59(3): 1081–1091, doi: 10.4319/lo.2014.59.3.1081CrossRefGoogle Scholar
  14. Davies P S. 1989. Short-term growth measurements of corals using an accurate buoyant weighing technique. Marine Biology, 101(3): 389–395, doi: 10.1007/BF00428135CrossRefGoogle Scholar
  15. Dickson A G, Sabine C L, Christian J R. 2007. Guide to best practices for ocean CO2 measurements. Sidney, Canada: North Pacific Marine Science OrganizationGoogle Scholar
  16. Doney S C, Balch W M, Fabry V J, et al. 2009. Ocean acidification: a critical emerging problem for the ocean sciences. Oceanography, 22(4): 16–25, doi: 10.5670/oceanogCrossRefGoogle Scholar
  17. Dufault A M, Ninokawa A, Bramanti L, et al. 2013. The role of light in mediating the effects of ocean acidification on coral calcification. Journal of Experimental Biology, 216(9): 1570–1577, doi: 10.1242/jeb.080549CrossRefGoogle Scholar
  18. Edmunds P J. 2011. Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp.. Limnology and Oceanography, 56(6): 2402–2410, doi: 10.4319/lo.2011. 56.6.2402CrossRefGoogle Scholar
  19. Edmunds P J, Cumbo V R, Fan T Y. 2013. Metabolic costs of larval settlement and metamorphosis in the coral Seriatopora caliendrum under ambient and elevated pCO2. Journal of Experimental Marine Biology and Ecology, 443: 33–38, doi: 10.1016/j.jembe.2013.02.032CrossRefGoogle Scholar
  20. Erez J, Reynaud S, Silverman J, et al. 2011. Coral calcification under ocean acidification and global change. In: Dubinsky Z, Stambler N, eds. Coral Reefs: An Ecosystem in Transition. Dordrecht: Springer, 151–176CrossRefGoogle Scholar
  21. Evensen N R, Edmunds P J. 2018. Effect of elevated pCO2 on competition between the scleractinian corals Galaxea fascicularis and Acropora hyacinthus. Journal of Experimental Marine Biology and Ecology, 500: 12–17, doi: 10.1016/j.jembe.2017.12.002CrossRefGoogle Scholar
  22. Fabry V J, Seibel B A, Feely R A, et al. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science, 65(3): 414–432, doi: 10.1093/icesjms/fsn048CrossRefGoogle Scholar
  23. Fangue N A, O'Donnell M J, Sewell M A, et al. 2010. A laboratorybased, experimental system for the study of ocean acidification effects on marine invertebrate larvae. Limnology and Oceanography: Methods, 8(8): 441–452, doi: 10.4319/lom.2010.8.441Google Scholar
  24. Gattuso J P, Allemand D, Frankignoulle M. 1999. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Integrative and Comparative Biology, 39(1): 160–183Google Scholar
  25. Hillhouse E W, Grammatopoulos D K. 2006. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocrine Reviews, 27(3): 260–286, doi: 10.1210/er.2005-0034CrossRefGoogle Scholar
  26. Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. 2007. Coral reefs under rapid climate change and ocean acidification. Science, 318(5857): 1737–1742, doi: 10.1126/science.1152509CrossRefGoogle Scholar
  27. Hofmann G E, Barry J P, Edmunds P J, et al. 2010. The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annual Review of Ecology, Evolution, and Systematics, 41: 127–147, doi: 10.1146/annurev. ecolsys.110308.120227CrossRefGoogle Scholar
  28. Hofmann G E, O'Donnell M J, Todgham A E. 2008. Using functional genomics to explore the effects of ocean acidification on calcifying marine organisms. Marine Ecology Progress Series, 373: 219–225, doi: 10.3354/meps07775CrossRefGoogle Scholar
  29. Huang Hui, Yuan Xiangcheng, Cai Weijun, et al. 2014. Positive and negative responses of coral calcification to elevated pCO2: case studies of two coral species and the implications of their responses. Marine Ecology Progress Series, 502: 145–156, doi: 10.3354/meps10720CrossRefGoogle Scholar
  30. Iguchi A, Ozaki S, Nakamura T, et al. 2012. Effects of acidified seawater on coral calcification and symbiotic algae on the massive coral Porites australiensis. Marine Environmental Research, 73: 32–36, doi: 10.1016/j.marenvres.2011.10.008CrossRefGoogle Scholar
  31. Jokiel P L. 2011. Ocean acidification and control of reef coral calcification by boundary layer limitation of proton flux. Bulletin of Marine Science, 87(3): 639–657, doi: 10.5343/bms.2010.1107CrossRefGoogle Scholar
  32. Jokiel P L, Rodgers K S, Kuffner I B, et al. 2008. Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs, 27(3): 473–483, doi: 10.1007/s00338-008-0380-9CrossRefGoogle Scholar
  33. Kleypas J A, Buddemeier R W, Archer D, et al. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science, 284(5411): 118–120, doi: 10.1126/science. 284.5411.118CrossRefGoogle Scholar
  34. Langdon C, Atkinson M J. 2005. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. Journal of Geophysical Research: Oceans, 110(C9): C09S07CrossRefGoogle Scholar
  35. Langdon C, Takahashi T, Sweeney C, et al. 2000. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochemical Cycles, 14(2): 639–654, doi: 10.1029/1999GB001195CrossRefGoogle Scholar
  36. Leclercq N, Gattuso J P, Jaubert J. 2002. Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnology and Oceanography, 47(2): 558–564, doi: 10.4319/lo.2002.47.2.0558CrossRefGoogle Scholar
  37. Marubini F, Atkinson M J. 1999. Effects of lowered pH and elevated nitrate on coral calcification. Marine Ecology Progress Series, 188: 117–121, doi: 10.3354/meps188117CrossRefGoogle Scholar
  38. Marubini F, Ferrier-Pagès C, Furla P, et al. 2008. Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism. Coral Reefs, 27(3): 491–499, doi: 10.1007/s00338-008-0375-6CrossRefGoogle Scholar
  39. McCulloch M, Falter J, Trotter J, et al. 2012a. Coral resilience to ocean acidification and global warming through pH up-regulation. Nature Climate Change, 2(8): 623–627, d o i: 1 0. 1 0 3 8 /nclimate1473CrossRefGoogle Scholar
  40. McCulloch M, Trotter J, Montagna P, et al. 2012b. Resilience of coldwater scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochimica et Cosmochimica Acta, 87: 21–34, doi: 10.1016/j.gca.2012.03.027CrossRefGoogle Scholar
  41. McGraw C M, Cornwall C E, Reid M R, et al. 2010. An automated pHcontrolled culture system for laboratory-based ocean acidification experiments. Limnology and Oceanography: Methods, 8(12): 686–694, doi: 10.4319/lom.2010.8.0686Google Scholar
  42. Orr J C, Fabry V J, Aumont O, et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059): 681–686, doi: 10.1038/nature04095CrossRefGoogle Scholar
  43. Ries J B. 2011. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochimica et Cosmochimica Acta, 75(14): 4053–4064, doi: 10.1016/j.gca.2011.04.025CrossRefGoogle Scholar
  44. Rivest E B, Hofmann G E. 2014. Responses of the metabolism of the larvae of Pocillopora damicornis to ocean acidification and warming. PLoS One, 9(4): e96172, doi: 10.1371/journal. pone.0096172CrossRefGoogle Scholar
  45. Rodolfo-Metalpa R, Martin S, Ferrier-Pagès C, et al. 2010. Response of the temperate coral Cladocora caespitosa to mid-and longterm exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences, 7(1): 289–300, doi: 10.5194/bg-7-289-2010CrossRefGoogle Scholar
  46. Slabbekoorn H, Bouton N, Van Opzeeland I, et al. 2010. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends in Ecology & Evolution, 25(7): 419–427CrossRefGoogle Scholar
  47. Smith J N, Strahl J, Noonan S H C, et al. 2016. Reduced heterotrophy in the stony coral Galaxea fascicularis after life-long exposure to elevated carbon dioxide. Scientific Reports, 6: 27019, doi: 10.1038/srep27019CrossRefGoogle Scholar
  48. Takahashi A, Kurihara H. 2013. Ocean acidification does not affect the physiology of the tropical coral Acropora digitifera during a 5-week experiment. Coral Reefs, 32(1): 305–314, d o i: 10.1007/s00338-012-0979-8CrossRefGoogle Scholar
  49. Tanaka K, Holcomb M, Takahashi A, et al. 2015. Response of Acropora digitifera to ocean acidification: constraints from δ11B, Sr, Mg, and Ba compositions of aragonitic skeletons cultured under variable seawater pH. Coral Reefs, 34(4): 1139–1149, doi: 10.1007/s00338-015-1319-6CrossRefGoogle Scholar
  50. Zheng Xinqing, Kuo Fuwen, Pan Ke, et al. 2018. Different calcification responses of two hermatypic corals to CO2-driven ocean acidification. Environmental Science and Pollution Research,: doi: 10.1007/s11356-018-1376-9CrossRefGoogle Scholar
  51. Zheng Xinqing, Li Yuanchao, Lin Rongcheng, et al. 2013. Coral reef conservation and restoration in Mainland China. Malysian Journal of Science, 32(SI): 221–238Google Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina
  2. 2.Research Center for OceanographyIndonesian Institute of SciencesJakartaIndonesia
  3. 3.Institute for Advanced StudyShenzhen UniversityShenzhenChina

Personalised recommendations