Advertisement

Journal of High Energy Physics

, 2019:11 | Cite as

Electroweak symmetric dark matter balls

  • Eduardo Pontón
  • Yang BaiEmail author
  • Bithika Jain
Open Access
Regular Article - Theoretical Physics
  • 19 Downloads

Abstract

In the simple Higgs-portal dark matter model with a conserved dark matter number, we show that there exists a non-topological soliton state of dark matter. This state has smaller energy per dark matter number than a free particle state and has its interior in the electroweak symmetric vacuum. It could be produced in the early universe from first-order electroweak phase transition and contribute most of dark matter. This electroweak symmetric dark matter ball is a novel macroscopic dark matter candidate with an energy density of the electroweak scale and a mass of 1 gram or above. Because of its electroweak-symmetric interior, the dark matter ball has a large geometric scattering cross section off a nucleon or a nucleus. Dark matter and neutrino experiments with a large-size detector like Xenon1T, BOREXINO and JUNO have great potential to discover electroweak symmetric dark matter balls. We also discuss the formation of bound states of a dark matter ball and ordinary matter.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. Roy. Astron. Soc. 152 (1971)75 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    E. Witten, Cosmic Separation of Phases, Phys. Rev. D 30 (1984) 272 [INSPIRE].ADSGoogle Scholar
  4. [4]
    G. Rosen, Particlelike Solutions to Nonlinear Complex Scalar Field Theories with Positive-Definite Energy Densities, J. Math. Phys. 9 (1968) 996.ADSCrossRefGoogle Scholar
  5. [5]
    R. Friedberg, T.D. Lee and A. Sirlin, A Class of Scalar-Field Soliton Solutions in Three Space Dimensions, Phys. Rev. D 13 (1976) 2739 [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    S.R. Coleman, Q Balls, Nucl. Phys. B 262 (1985) 263 [Erratum ibid. B 269 (1986) 744] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T.D. Lee and Y. Pang, Nontopological solitons, Phys. Rept. 221 (1992) 251 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    J.A. Frieman, G.B. Gelmini, M. Gleiser and E.W. Kolb, Solitogenesis: Primordial Origin of Nontopological Solitons, Phys. Rev. Lett. 60 (1988) 2101 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K. Griest and E.W. Kolb, Solitosynthesis: Cosmological Evolution of Nontopological Solitons, Phys. Rev. D 40 (1989) 3231 [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.A. Frieman, A.V. Olinto, M. Gleiser and C. Alcock, Cosmic Evolution of Nontopological Solitons. 1., Phys. Rev. D 40 (1989) 3241 [INSPIRE].
  11. [11]
    A. Kusenko and M.E. Shaposhnikov, Supersymmetric Q balls as dark matter, Phys. Lett. B 418 (1998)46 [hep-ph/9709492] [INSPIRE].
  12. [12]
    G.R. Dvali, A. Kusenko and M.E. Shaposhnikov, New physics in a nutshell, or Q ball as a power plant, Phys. Lett. B 417 (1998) 99 [hep-ph/9707423] [INSPIRE].
  13. [13]
    A. Kusenko, V. Kuzmin, M.E. Shaposhnikov and P.G. Tinyakov, Experimental signatures of supersymmetric dark matter Q balls, Phys. Rev. Lett. 80 (1998) 3185 [hep-ph/9712212] [INSPIRE].
  14. [14]
    E. Witten, Current Algebra, Baryons and Quark Confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    ATLAS and CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s} \) = 7 and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015)191803 [arXiv:1503.07589] [INSPIRE].
  16. [16]
    E.G. Lubeck, M.C. Birse, E.M. Henley and L. Wilets, Momentum Projection and Relativistic Boost of Solitons: Coherent States and Projection, Phys. Rev. D 33 (1986) 234 [INSPIRE].ADSGoogle Scholar
  17. [17]
    D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and Instantons at Finite Temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    R.R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D 45 (1992) 4695 [Erratum ibid. D 48 (1993) 5965] [hep-ph/9204216] [INSPIRE].ADSGoogle Scholar
  19. [19]
    P.B. Arnold and O. Espinosa, The Effective potential and first order phase transitions: Beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. D 50 (1994) 6662] [hep-ph/9212235] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M.E. Carrington, The Effective potential at finite temperature in the Standard Model, Phys. Rev. D 45 (1992) 2933 [INSPIRE].ADSGoogle Scholar
  21. [21]
    C. Delaunay, C. Grojean and J.D. Wells, Dynamics of Non-renormalizable Electroweak Symmetry Breaking, JHEP 04 (2008) 029 [arXiv:0711.2511] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The Baryogenesis Window in the MSSM, Nucl. Phys. B 812 (2009) 243 [arXiv:0809.3760] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Katz and M. Perelstein, Higgs Couplings and Electroweak Phase Transition, JHEP 07 (2014)108 [arXiv:1401.1827] [INSPIRE].
  24. [24]
    D. Curtin, P. Meade and H. Ramani, Thermal Resummation and Phase Transitions, Eur. Phys. J. C 78 (2018) 787 [arXiv:1612.00466] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    B. Jain, S.J. Lee and M. Son, Validity of the effective potential and the precision of Higgs field self-couplings, Phys. Rev. D 98 (2018) 075002 [arXiv:1709.03232] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  27. [27]
    D.J.H. Chung, A.J. Long and L.-T. Wang, 125 GeV Higgs boson and electroweak phase transition model classes, Phys. Rev. D 87 (2013) 023509 [arXiv:1209.1819] [INSPIRE].ADSGoogle Scholar
  28. [28]
    H.H. Patel and M.J. Ramsey-Musolf, Baryon Washout, Electroweak Phase Transition and Perturbation Theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].
  29. [29]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  30. [30]
    Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  31. [31]
    H.-Y. Cheng and C.-W. Chiang, Revisiting Scalar and Pseudoscalar Couplings with Nucleons, JHEP 07 (2012) 009 [arXiv:1202.1292] [INSPIRE].
  32. [32]
    CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].
  33. [33]
    ATLAS collaboration, Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, JHEP 01 (2018)126 [arXiv:1711.03301] [INSPIRE].
  34. [34]
    P.B. Price and M.H. Salamon, Search for Supermassive Magnetic Monopoles Using Mica Crystals, Phys. Rev. Lett. 56 (1986) 1226 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. De Rujula and S.L. Glashow, Nuclearites: A Novel Form of Cosmic Radiation, Nature 312 (1984)734 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Bramante, B. Broerman, R.F. Lang and N. Raj, Saturated Overburden Scattering and the Multiscatter Frontier: Discovering Dark Matter at the Planck Mass and Beyond, Phys. Rev. D 98 (2018) 083516 [arXiv:1803.08044] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J. Bramante, B. Broerman, J. Kumar, R.F. Lang, M. Pospelov and N. Raj, Foraging for dark matter in large volume liquid scintillator neutrino detectors with multiscatter events, Phys. Rev. D 99 (2019) 083010 [arXiv:1812.09325] [INSPIRE].
  38. [38]
    Borexino collaboration, Final results of Borexino Phase-I on low energy solar neutrino spectroscopy, Phys. Rev. D 89 (2014) 112007 [arXiv:1308.0443] [INSPIRE].
  39. [39]
    J. Hong, W.W. Craig, P. Graham, C.J. Hailey, N.J.C. Spooner and D.R. Tovey, The scintillation efficiency of carbon and hydrogen recoils in an organic liquid scintillator for dark matter searches, Astropart. Phys. 16 (2002) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    V.I. Tretyak, Semi-empirical calculation of quenching factors for ions in scintillators, Astropart. Phys. 33 (2010) 40 [arXiv:0911.3041] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996)195 [hep-ph/9506380] [INSPIRE].
  42. [42]
    JUNO collaboration, Neutrino Physics with JUNO, J. Phys. G 43 (2016) 030401 [arXiv:1507.05613] [INSPIRE].
  43. [43]
    R. Shah, Studies on the trigger configuration for the JUNO experiment, MSc Thesis, RWTH Aachen University, Aachen Germany (2018), http://collaborations.fz-juelich.de/ikp/neutrino/group mem/documents/Rikhav Master Thesis.pdf.
  44. [44]
    E.T. Herrin, D.C. Rosenbaum and V.L. Teplitz, Seismic search for strange quark nuggets, Phys. Rev. D 73 (2006) 043511 [astro-ph/0505584] [INSPIRE].
  45. [45]
    D. Cyncynates, J. Chiel, J. Sidhu and G.D. Starkman, Reconsidering seismological constraints on the available parameter space of macroscopic dark matter, Phys. Rev. D 95 (2017) 063006 [arXiv:1610.09680] [INSPIRE].ADSGoogle Scholar
  46. [46]
    IceCube collaboration, The Design and Performance of IceCube DeepCore, Astropart. Phys. 35 (2012)615 [arXiv:1109.6096] [INSPIRE].
  47. [47]
    DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.05471 [INSPIRE].
  48. [48]
    C.G. Callan Jr., Disappearing Dyons, Phys. Rev. D 25 (1982) 2141 [INSPIRE].ADSGoogle Scholar
  49. [49]
    V.A. Rubakov, Adler-Bell-Jackiw Anomaly and Fermion Number Breaking in the Presence of a Magnetic Monopole, Nucl. Phys. B 203 (1982) 311 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    K. Enqvist, J. Ignatius, K. Kajantie and K. Rummukainen, Nucleation and bubble growth in a first order cosmological electroweak phase transition, Phys. Rev. D 45 (1992) 3415 [INSPIRE].ADSGoogle Scholar
  51. [51]
    A.D. Linde, Fate of the False Vacuum at Finite Temperature: Theory and Applications, Phys. Lett. B 100 (1981) 37 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G.C. Dorsch, S.J. Huber and T. Konstandin, Bubble wall velocities in the Standard Model and beyond, JCAP 12 (2018) 034 [arXiv:1809.04907] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A.H. Guth and E.J. Weinberg, Cosmological Consequences of a First Order Phase Transition in the SU(5) Grand Unified Model, Phys. Rev. D 23 (1981) 876 [INSPIRE].ADSGoogle Scholar
  54. [54]
    Y. Bai, A.J. Long and S. Lu, Dark Quark Nuggets, Phys. Rev. D 99 (2019) 055047 [arXiv:1810.04360] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.ICTP South American Institute for Fundamental Research & Instituto de Física TeóricaUniversidade Estadual PaulistaSão PauloBrazil
  2. 2.Department of PhysicsUniversity of Wisconsin-MadisonMadisonU.S.A.

Personalised recommendations