An integrative taxonomic study reveals carychiid microsnails of the troglobitic genus Zospeum in the Eastern and Dinaric Alps (Gastropoda, Ellobioidea, Carychiinae)

  • Thomas InäbnitEmail author
  • Adrienne Jochum
  • Marian Kampschulte
  • Gunhild Martels
  • Bernhard Ruthensteiner
  • Rajko Slapnik
  • Claudia Nesselhauf
  • Eike Neubert
Original Article


The minute snails of the troglobitic genus Zospeum are known from the southeastern Alps through the Dinarides and from the Pyrenees to the Cantabrian Mountains. The majority of Zospeum has been described from the northernmost region of Southeast Europe, the geographical focus of our study. The taxonomic value of the few available morphological shell characters has been debated for nearly as long as the genus is known. Recent results of genetic studies questioned the established taxonomic system based on morphological characters in the 1970s, with one species (Z. isselianum) appearing to be polyphyletic. Here, we present a comprehensive revision of Zospeum from the Alpine and Dinaride regions, using an integrative approach including genetic methods, morphometry, X-ray micro computer tomography (micro-CT), and SEM. We reveal 25 species and describe 5 new to science. Genetic analysis separated the genus into five clades, strongly challenging the previously valid taxonomic system and revealing several species polyphyletic. The various methods used for morphological characterization often proved useful in separating species showing high incidence of cryptic speciation in the genus. Radular investigation, using SEM, uncovered new insights about the taxonomic value of the configuration of the radular ribbon within Zospeum as well as Zospeum’s dentitional affinity within the Ellobioidea.


Troglobitic microsnails Dinarides Shell variability Subterranean ecology Molecular phylogenetics Morphometrics Computer tomography Microgastropods 


Shell characters

(see Fig. 2)


Aperture height


Aperture width


Length of columellar junction between shell and aperture


Diameter of first whorl


Height of last whorl


Width of last whorl


Spire angle


Shell height


Shell width

Material is housed in the following collections:


Adrienne Jochum Collection, Kelkheim, Germany


Academy of Natural Sciences, Philadelphia, Pa., USA


Natural History Museum, London, UK


Gianbattista Nardi Collection, Gussago, Brescia, Italy


Malacological Collection of the Slovenian Museum of Natural History (former CSR SASA, MZBI and SMNH) Ljubljana, Slovenia


Museum of Natural History of Trieste, Trieste, Italy


Naturhistorisches Museum Wien, Wien, Austria


Naturhistorisches Museum der Burgergemeinde Bern, Bern, Switzerland


Rajko Slapnik Collection, Kamnik, Slovenia


Senckenberg Forschungsinstitut und Naturmuseum, Frankfurt am Main, Germany


Willy De Mattia Collection, Muggia, Italy


Massimo Prodan Collection, Trieste, Italy


The Slovenian Academy of Sciences and Arts (encompasses Jovan Hadži Biological Institute (BIJH)) Ljubljana, Slovenia


Zoologische Staatssammlung München



We are grateful to the collection managers and curators, who generously gave access to the collections under their care: Anita Eschner (Naturhistorisches Museum, Vienna), Ronald Janssen (Research Institute Senckenberg, Frankfurt am Main), Jonathan Ablett (Natural History Museum, London), and Matjaž Kuntner (Center for Scientific Research of the Slovenian Academy of Sciences and Arts, Ljubljana). We especially thank those who patiently imaged the type material including Katharina Jaksch-Mason (NHMW), Paulo Albano (NHMW), Sara-Maria Schnedl (NHMW), Sigrid Hof (SMF), and Estée Bochud (NMBE). We are also indebted to those who generously sent us precious specimens from their private collections including Massimo Prodan, Willy De Mattia, and Gianbattista Nardi. For many insightful discussions and support, we especially thank Anita Eschner, Ruud Bank, Alexander Weigand, Beat Pfarrer, and Massimo Prodan. We acknowledge Tonći Rađa for his kind assistance interpreting Croatian cave names and locality data. For material and GPS collection data, we thank Roman Ozimec and the Croatian Biospeleological Society as well as Sara-Maria Schnedl for her help in translating Italian texts. We gratefully acknowledge Thomas Neubauer who kindly transported borrowed material back and forth to Vienna. We also thank Manfred Ruppel (ret. Goethe University Frankfurt) for his insights and help with the SEM and Annette Klussmann-Kolb for her generous support. For creation of the video of Z. obesum, we thank Jean Martels and Henning Heckmann (Justus Liebig University Computer Center, Giessen). This work was made possible in part by grants to AJ from the Malacological Society of London for SEM resources and from the SYNTHESYS Project, which enabled AJ to spend weeks on end studying the NHMW collection. The SYNTHESYS Project is financed by the European Community Research Infrastructure Action under the FP7 “Capacities” Program.

Supplementary material

13127_2019_400_Fig11_ESM.png (790 kb)
Supplementary Figure S1

Overall morphometric analyses. From top to bottom: measurement-based PCA, geometric PCA, CVA. (PNG 789 kb)

13127_2019_400_MOESM1_ESM.tif (7.6 mb)
High Resolution Image (TIF 7811 kb)
13127_2019_400_Fig12_ESM.png (537 kb)
Supplementary Figure S2

Morphometric analyses of the Z. spelaeum clade. From top to bottom: measurement-based PCA, geometric PCA, CVA. (PNG 537 kb)

13127_2019_400_MOESM2_ESM.tif (6.1 mb)
High Resolution Image (TIF 6203 kb)
13127_2019_400_Fig13_ESM.png (471 kb)
Supplementary Figure S3

Morphometric results of the Z. alpestre clade. From top to bottom: measurement-based PCA, geometric PCA, CVA. (PNG 471 kb)

13127_2019_400_MOESM3_ESM.tif (5.6 mb)
High Resolution Image (TIF 5776 kb)
13127_2019_400_Fig14_ESM.png (355 kb)
Supplementary Figure S4

Morphometric results of the Z. obesum clade. From top to bottom: measurement-based PCA, geometric PCA, CVA. (PNG 355 kb)

13127_2019_400_MOESM4_ESM.tif (5.2 mb)
High Resolution Image (TIF 5292 kb)
13127_2019_400_Fig15_ESM.png (523 kb)
Supplementary Figure S5

Morphometric results of the Z. pretneri clade. From top to bottom: measurement-based PCA, geometric PCA, CVA. (PNG 523 kb)

13127_2019_400_MOESM5_ESM.tif (6.3 mb)
High Resolution Image (TIF 6493 kb)
13127_2019_400_Fig16_ESM.png (546 kb)
Supplementary Figure S6

Morphometric results of the Z. frauenfeldii clade. From top to bottom: measurement-based PCA, geometric PCA, CVA. (PNG 546 kb)

13127_2019_400_MOESM6_ESM.tif (8.3 mb)
High Resolution Image (TIF 8475 kb)
13127_2019_400_Fig17_ESM.png (525 kb)
Supplementary Figure S7

Morphometric results of Z. globosum, sorted by populations. From top to bottom: measurement-based PCA, geometric PCA, CVA. (PNG 525 kb)

13127_2019_400_MOESM7_ESM.tif (6.3 mb)
High Resolution Image (TIF 6412 kb)
13127_2019_400_Fig18_ESM.png (1.2 mb)
Supplementary Figure S8

Distribution of species within the Z. spelaeum clade. (PNG 1276 kb)

13127_2019_400_MOESM8_ESM.tif (2.1 mb)
High Resolution Image (TIF 2132 kb)
13127_2019_400_Fig19_ESM.png (1 mb)
Supplementary Figure S9

Distribution of species within the Z. alpestre clade. (PNG 1027 kb)

13127_2019_400_MOESM9_ESM.tif (1.9 mb)
High Resolution Image (TIF 1896 kb)
13127_2019_400_Fig20_ESM.png (910 kb)
Supplementary Figure S10

Distribution of species within the Z. obesum clade. (PNG 909 kb)

13127_2019_400_MOESM10_ESM.tif (1.7 mb)
High Resolution Image (TIF 1693 kb)
13127_2019_400_Fig21_ESM.png (1.5 mb)
Supplementary Figure S11

Distribution of species within the Z. pretneri clade. (PNG 1584 kb)

13127_2019_400_MOESM11_ESM.tif (2.4 mb)
High Resolution Image (TIF 2414 kb)
13127_2019_400_Fig22_ESM.png (2.4 mb)
Supplementary Figure S12

Distribution of species within the Z. frauenfeldii clade. (PNG 2445 kb)

13127_2019_400_MOESM12_ESM.tif (27.4 mb)
High Resolution Image (TIF 28018 kb)
13127_2019_400_Fig23_ESM.png (2.7 mb)
Supplementary Figure S13

Distribution of species that were not assigned to any clade and of specimens with unknown identity. (PNG 2715 kb)

13127_2019_400_MOESM13_ESM.tif (3.6 mb)
High Resolution Image (TIF 3674 kb)
13127_2019_400_Fig24_ESM.png (2.6 mb)
Supplementary Figure S14

Scanning electron micrographs (SEM) showing superficial microstructure on Zospeum shells. (a) Zospeum speleaum, CSRSASA 3983ª, Skocjanske jama, pitting on protoconch. — (b) Zospeum spelaeum, MCSMNH 31286, Mačkovica jama, Interconnected rows of pitting on protoconch. — (c) Zospeum amoenum, MCSMNH 21675, Konečka zijalka, rows of pits interspersed with irregular smooth zones on protoconch; (d) ditto, interconnected rows of pits on teleoconch. — (e) Zospeum isselianum, MCSMNH 37013, Turjeva jama, distinct regular rows of pits interspersed by regular non-pitted zones on protoconch; (f) ditto, distinct spiral striae of interconnected pits and raised revolving lines of microstructure on teleoconch. — (g) Zospeum kupitzense, SMNH 3291, Ložekarjeva jama, pitting on protoconch; (h) ditto, incised suture and more or less regular bands of interconnected pits on teleoconch. — Magnification varies for each perspective, see scale bars; all Figs taken by M. Ruppel, formerly Goethe University Frankfurt am Main. (PNG 2642 kb)

13127_2019_400_MOESM14_ESM.tif (14.2 mb)
High Resolution Image (TIF 14590 kb)
13127_2019_400_Fig25_ESM.png (1.2 mb)
Supplementary Figure S15

Scanning electron micrographs (SEM) showing superficial microstructure on Zospeum shells. (a) Zospeum obesum, NMBE 553409, Krška jama, interconnected pits on protoconch; (b) ditto, distinct spiral striae on teleoconch. — (c) Zospeum exiguum, MCSMNH 39012, Križna jama, protoconch with dense pitting and organic debris; (d) ditto, distinct spiral striae on the penultimate whorl; — Magnification varies for each perspective, see scale bars; all Figs taken by M. Ruppel, formerly Goethe University Frankfurt am Main. (PNG 1210 kb)

13127_2019_400_MOESM15_ESM.tif (7.5 mb)
High Resolution Image (TIF 7633 kb)
13127_2019_400_Fig26_ESM.png (2.2 mb)
Supplementary Figure S16

Scanning electron micrographs (SEM) showing superficial microstructure on Zospeum shells. (a) Zospeum globosum, NHMW 111543, Cavernetta di Vobarno, pitted protoconch; (b) ditto, sprial striae of interconnected pits and eroded rib-like microstructure on teleoconch. — (c) Zospeum subobesum, NMBE 553326, Tounjčica Cave, pitting on protoconch; (d) ditto, spiral striae of interconnected pits on teleoconch. — (e) Zospeum frauenfeldii, NMBE 553388, Podpeška jama, protoconch showing dense microstructure of interconnected pits; (f) ditto, revolving lines of reticulate structure on 2nd whorl; (g) ditto, pronounced ribbing on teleoconch. — (h) Zospeum subobesum, NMBE 553326, Tounjčica Cave, teleoconch showing partial costate structure at junction of penultimate and ultimate whorls. — Magnification varies for each perspective, see scale bars; all Figs taken by M. Ruppel, formerly Goethe University Frankfurt am Main. (PNG 2205 kb)

13127_2019_400_MOESM16_ESM.tif (13.9 mb)
High Resolution Image (TIF 14249 kb)
13127_2019_400_Fig27_ESM.png (3.1 mb)
Supplementary Figure S17

Scanning electron micrographs (SEM) showing microstructure on Zospeum radulae. (a) Zospeum exiguum, NMBE 553384, Križna jama, long, tapered-type of radular ribbon; (b) ditto, bicuspid crowns bearing semi-detached endocones; (c) ditto, overview showing tooth and basal plate alignment; (d) ditto, biscuspid laterals (right side) and transitional teeth bearing four-pointed cusps (left side). — (e) Zospeum frauenfeldii, NMBE 553388, Podpeška jama, serrated marginal crowns atop of concave basal plates; (f) ditto, rachidian tooth (middle column) flanked by irregular lateral teeth; (g) ditto, row of lateral teeth showing distinct grooves down the mesocone; (h) ditto, tapered-type radular ribbon with attenuated triangular base. — Magnification varies for each perspective, see scale bars; all Figs taken by M. Ruppel, formerly Goethe University Frankfurt am Main. (PNG 3140 kb)

13127_2019_400_MOESM17_ESM.tif (10 mb)
High Resolution Image (TIF 10240 kb)
13127_2019_400_Fig28_ESM.png (3.1 mb)
Supplementary Figure S18

Scanning electron micrographs (SEM) showing microstructure on Zospeum radulae. (a) Zospeum isselianum, NMBE 553389, Turjeva jama, tricuspid lateral teeth; (b) ditto, marginal teeth; (c) ditto, rachidian and lateral teeth. — (d–e) Zospeum amoenum, NMBE 553377, Konečka zijalka, crowns showing mesocones with deep median grooves and semi-detached endocones. — (f) Zospeum obesum, NMBE 553409, Krška jama, very long, tapered-type ribbon with pointed or obtuse ends; (g) ditto, stressed and broken lateral crowns; (h) ditto, worn crowns of transitional teeth. — Magnification varies for each perspective, see scale bars; all Figs taken by M. Ruppel, formerly Goethe University Frankfurt am Main. (PNG 3123 kb)

13127_2019_400_MOESM18_ESM.tif (13.9 mb)
High Resolution Image (TIF 14250 kb)
13127_2019_400_Fig29_ESM.png (2.4 mb)
Supplementary Figure S19

Scanning electron micrographs (SEM) showing microstructure on Zospeum radulae. (a) Zospeum pretneri, NMBE 553290, Gornja Cerovačka pećina, tiny rachidian tooth and wing-like basal plates; (b) ditto, centrally grooved and partially bulged crowns of lateral teeth; (c) ditto, tricuspid teeth with wing-like basal plates; (d) ditto, consecutive rows of tricuspid crowns and wing-like basal plates. — (e) Zospeum kupitzense, NMBE 553393, Ložekarjeva jama, very long, anteriorly-tapered ribbon with straight-edged-type base; (f) ditto, long and sharply pointed transitional crowns. — Magnification varies for each perspective, see scale bars; all Figs taken by M. Ruppel, formerly Goethe University Frankfurt am Main. (PNG 2407 kb)

13127_2019_400_MOESM19_ESM.tif (11 mb)
High Resolution Image (TIF 11274 kb)
13127_2019_400_Fig30_ESM.png (2.3 mb)
Supplementary Figure S20

Scanning electron micrographs (SEM) showing microstructure on Zospeum radulae. (a) Zospeum spelaeum, MCSMNH 36841a, Postojnska jama, long and tapered-type ribbon with obtuse ends; (b) ditto, right lateral teeth; (c) ditto, transitional teeth; (d) ditto, marginal teeth. — (e) Zospeum spelaeum, NMBE 553311, Velika Pasica, very long and tapered-type ribbon with pointed or obtuse ends; (f) ditto, overview of middle radular section and concave basal plates. — Magnification varies for each perspective, see scale bars; all Figs taken by M. Ruppel, formerly Goethe University Frankfurt am Main. (PNG 2405 kb)

13127_2019_400_MOESM20_ESM.tif (11 mb)
High Resolution Image (TIF 11240 kb)
13127_2019_400_Fig31_ESM.png (2.3 mb)
Supplementary Figure S21

Scanning electron micrographs (SEM) showing microstructure on Zospeum radulae. (a) Zospeum spelaeum, NMBE 553311, Velika Pasica, grooved and wrinkled, marble-like surface texture; (b) ditto, grooved transitional teeth; (c) ditto, marginal teeth. — (d) Zospeum subobesum, NMBE 553326, Tounjčica, very long, anteriorly-tapered ribbon with straight-edged-type base; (e) ditto, marginal teeth; (f) ditto, transitional teeth. — Magnification varies for each perspective, see scale bars; all Figs taken by M. Ruppel, formerly Goethe University Frankfurt am Main. (PNG 2317 kb)

13127_2019_400_MOESM21_ESM.tif (10.8 mb)
High Resolution Image (TIF 11083 kb)
13127_2019_400_MOESM22_ESM.doc (306 kb)
ESM 1 (DOC 306 kb)


  1. Absolon, K. (1916). Z výzkumných cest po krasech Balkánu. O balkánské temnostní zvířeně. Zlatá Praha, 33(48), 574–576 (49): 586–588; (50): 597–600; (51): 609–612; (52): 622–624.Google Scholar
  2. Allegretti, C. (1944). Primo Contributo alla Conoscenza della Speleofauna Malacologica della Lombardia. Le Grotte d’Italia, 5(2), 48–56.Google Scholar
  3. Bank, R. A., & Neubert, E. (2016). Notes on Enidae, 7. Revision of the Enidae of Iran, with special reference to the collection of Jacques de Morgan (Gastropoda: Pulmonata). Vita Malacologica, 14, 1–84.Google Scholar
  4. Baur, H., & Leuenberger, C. (2011). Analysis of ratios in multivariate morphometry. Systematic Biology, 60, 813–825.CrossRefGoogle Scholar
  5. Bole, J. (1960). Novi vrsti iz rodu Zospeum Bourg. (Gastropoda). Biološki Vestnik, 7, 61–64.Google Scholar
  6. Bole, J. (1974). Rod Zospeum Bourguignat 1865 (Gastropoda, Ellobiidae) v Jugoslawiji. Razprave Slovenska Academija znanosti in Umetnosti, Cl. IV, 17(5), 249–291.Google Scholar
  7. Böttger-Schnack, R., & Machida, R. J. (2011). Comparison of morphological and molecular traits for species identification and taxonomic grouping of oncaeid copepods. Hydrobiologia, 666(1), 111–125.CrossRefGoogle Scholar
  8. Bourguignat, J. R. (1856). Aménités Malacologiques. § LI. Du genre Zospeum. Revue et Magasin de Zoologie pure et appliquée, 8(2), 499–516.Google Scholar
  9. Bruguière, J. G. (1789). 1789–1792. Encyclopédie méthodique. Histoire naturelle des vers. Panckouke, Paris, 1, 1–344 [1789]; 2: 345–758 [1792].Google Scholar
  10. Brusina, S. (1886). Ueber die Mollusken - Fauna Oesterreich-Ungarns. Mittheilungen des Naturwissenschaftlichen Vereins für Steiermark, Abhandlungen, 22, 29–56.Google Scholar
  11. Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659.CrossRefGoogle Scholar
  12. Conci, C. (1956). Nuovi rinvenimenti di Molluschi troglobi del genere Zospeum in caverne delle Prealpi Trentine e Venete (Italia settentrionale). Premier Congrès International de Spéléologie, 3(3), 275–281.Google Scholar
  13. Connolly, M. (1915). Notes on South African Mollusca. Annals of the South African Museum, 13, 108–109.Google Scholar
  14. D’Ailly, A. (1896). Contributions à la connaissance des mollusques terrestres et d'eau douce de Kaméroun. Bihang till Kungliga Svenska vetenskaps-akademiens handlingar, bd 22, 4(2), 118.Google Scholar
  15. De Mattia, W. (2003). I molluschi ipogei del Carso Triestino (Friuli-Venezia Giulia, Italia) (Gastropoda: Prosobranchia, basommatophora, styllommatophora; Bivalvia: Pterioida). Check-list delle specie, tassonomia, sistematica, ecologia e Biogeografia. Atti del museo civico di storia natural di Trieste, 50, 89–218.Google Scholar
  16. De Mattia, W. (2004). Pseudochondrula seductilis (Rossmässler, 1837) in Italia (Mollusca:Stylommatophora: Enidae). Bolletino Malacologico, 40(9–12), 104–108.Google Scholar
  17. Frauenfeld Von, G. (1854). Über einen bisher verkannten Laufkäfer beschrieben von L. Miller; und einen neuen augenlosen üsselkäfer, beschrieben von F. Schmidt; ferner einige von Schmidt in Schischka neu entdeckte Höhlentiere. Verhandlungen des Zoologisch-Botanischen Vereins in Wien, 4, 23–34.Google Scholar
  18. Frauenfeld Von, G. (1856). Die Gattung Carychium. Sitzungsberichte der mathematisch-natur-wissenschaftlichen Classe der aiserlichen Akademie der Wissenschaften, 19, 70–93.Google Scholar
  19. Freyer, H. (1855). Über neu endeckte Conchylien aus den Geschlechtern Carychium und Pterocera. Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften, 5, 18–23.Google Scholar
  20. Gittenberger, E. (1975). Cave snails found in southern Crna Gora. Glasnik Republ. Zavoda zast. Prirode. Prirodnjackog muzeja, 8, 21–37 Titograd.Google Scholar
  21. Gittenberger, E. (1982). Nachweis der Höhlenschnecke Zospeum alpestre (FREYER, 1855) in der Hafnerhöhle, Karawanken – Kärnten. Carinthia II, 172, 351–354.Google Scholar
  22. Giusti, F. (1975). Prime indagini anatomiche sul genere Zospeum (Pulmonata, Basommatophora). Notulae malacologicae XXI. Conchiglie, 11(3/4), 53–64.Google Scholar
  23. Giusti, F., & Pezzoli, E. (1982). Mollusci cavernicoli italiani (Notulae malacologicae. XXVII). Lavori della Società italiana di Biogeografia, 7, 431–450.Google Scholar
  24. Hamann, O. (1896). Europäische Höhlenfauna–Eine Darstellung der in den Höhlen Europas lebenden Tierwelt mit besonderer Berücksichtigung der Höhlenfauna Krains. Costenoble, Jena 375 pp.Google Scholar
  25. Hart, M. W., & Sunday, J. (2007). Things fall apart: biological species form unconnected parsimony networks. Biology Letters, 3, 509–512.CrossRefGoogle Scholar
  26. Hauffen, H. (1856a). Ueber ein neues Carychium. Verhandlungen des Zoologisch-Botanischen Vereins in Wien, 6, 623–624.Google Scholar
  27. Hauffen, H. (1856b). Zwei neue Schnecken. Verhandlungen des Zoologisch-Botanischen Vereins in Wien, 6, 701–702.Google Scholar
  28. Hauffen, H. (1858). Beiträge zur Grottenkunde Krain’s. Jahresheft des Vereines des krainischen Landes-Museums, 2, 96.Google Scholar
  29. Hickman, C. S. (1980). Gastropod radulae and the assessment of form in evolutionary paleontology. Paleobiology, 6(3), 276–294.CrossRefGoogle Scholar
  30. Holznagel, W. A. (1998). Research note: a nondestructive method for cleaning gastropod radulae from frozen, alcohol-fixed, or dried material. American Malacological Bulletin, 14, 181–183.Google Scholar
  31. Huelsenbeck, J. B., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.CrossRefGoogle Scholar
  32. Jeffreys, J. G. (1830). A synopsis of the testaceous pneumonobranchous Mollusca of Great Britain. Transactions of the Linnean Society of London., 16, 323–392.CrossRefGoogle Scholar
  33. Jochum, A. (2011). Evolution and diversity of the troglobitic Carychiidae - a morphological and phylogenetic investigation of the terrestrial ellobiiod genera, Carychium and Zospeum. The Malacologist, 57, 16–18.Google Scholar
  34. Jochum, A. (2015). Contributions to the Carychiidae (Gastropoda, Ellobioidea): new perspectives in carychiid taxonomy. [DPhil thesis]. Bern, Switzerland: University of Bern. 169 pp.Google Scholar
  35. Jochum, A., de Winter, A. J., Weigand, A. M., Gómez, B., & Prieto, C. (2015a). Two new species of Zospeum Bourguignat, 1856 from the Basque-Cantabrian Mountains, Northern Spain (Eupulmonata, Ellobioidea, Carychiidae). ZooKeys, 483, 81–96.CrossRefGoogle Scholar
  36. Jochum, A., Prozorova, L., Sharyi-ool, M., & Páll-Gergely, B. (2015b). A new member of troglobitic Carychiidae, Koreozospeum nodongense gen. Et sp. N. (Gastropoda, Eupulmonata, Ellobioidea) is described from Korea. ZooKeys, 517, 39–57.CrossRefGoogle Scholar
  37. Jochum, A., Slapnik, R., Klussmann-Kolb, A., Páll-Gergely, B., Kampschulte, M., Martels, G., Vrabec, M., Nesselhauf, C., & Weigand, A. M. (2015c). Groping through the black box of variability: An integrative taxonomic and nomenclatural re-evaluation of Zospeum isselianum Pollonera, 1887 and allied species using new imaging technology (Nano-CT, SEM), conchological, histological and molecular data (Ellobioidea, Carychiidae). Subterranean Biology, 16, 123–165.CrossRefGoogle Scholar
  38. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.CrossRefGoogle Scholar
  39. Katoh, K., Misawa, K., Kuma, K., & Myata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acid Research, 30, 3059–3066.CrossRefGoogle Scholar
  40. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P., & Drummond, A. (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.CrossRefGoogle Scholar
  41. Kerney, M. P., Cameron, R. A. D., & Jungbluth, J. H. (1983). Die Landschnecken Nord- und Mitteleuropas. Ein Bestimmungsbuch für Biologen und Naturfreunde, 1–384 Taf. 1–24. Hamburg, Berlin. (Parey).Google Scholar
  42. Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357.CrossRefGoogle Scholar
  43. Kuščer, L. (1928). Primo contributo alla fauna malacologica cavernicola della Venezia Tridentina. Studi Trentini di Scienze Naturali, 9(2), 185–187.Google Scholar
  44. Kuščer, L. (1932). Höhlen- und Quellenschnecken aus dem Flussgebiet der Ljubljanica. Archiv für Molluskenkunde, 64(2), 60–61.Google Scholar
  45. Linnaeus, C. (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species cum characteribus, differentiis, synonymis, locis, 10th ed. Laurentii Salvii, Holmiae, vol. 1: 824 pp.Google Scholar
  46. Luchtel, D. L., Martin, A. W., Deyrup-Olsen, I., & Boer, H. H. (1997). Gastropoda: Pulmonata. In F. W. Harrison & A. J. Kohn (Eds.), Microscopic Anatomy of Invertebrates (Vol. 6B, pp. 459–718). Mollusca II: Wiley-Liss, Inc., New York 828 pp.Google Scholar
  47. Martins, A. M. F. (1996). Anatomy and systematics of the Western Atlantic Ellobiidae (Gastropoda: Pulmonata). Malacologia, 37(2), 163–332.Google Scholar
  48. Martins, A. M. F. (2007). Morphological and anatomical diversity within Ellobiidae (Gastropoda, Pulmonata, Archaeopulmonata). Vita Malacologica, 4, 1–28.Google Scholar
  49. Nardi, G. (2015). Gli endemiti della fauna malacologica Bresciana. Natura Bresciana, 39, 57–93.Google Scholar
  50. Pezzoli, E. (1992). Il genere Zospeum Bourguignat, 1856 in Italia (Gastropoda Polmonata Basommatophora). Censimento delle stazioni ad oggi segnalate. Natura Bresciana, 27, 123–169.Google Scholar
  51. Pfeiffer, L. (1854). Synopsis Auriculaceorum. Malakozoologische Blätter, 1(5), 145–156 [august 1854]. Cassel (Theodor Fischer).Google Scholar
  52. Pollonera, C. (1887). Note malacologiche. I. Molluschi della Valle del Natisone (Friuli). Bullettino della Società Malacologica Italiana, 12(1886), 204–208.Google Scholar
  53. Pollonera, C. (1889). Note malacologiche - Un nuovo Zospeum italiano - Acme italiane del gruppo della costulatae - Vitrina stabilei e V. majori- La Xerophila maritima. Bollettino Società Malacologica Italiana, 14, 50–64.Google Scholar
  54. Pollonera, C. (1905). I Zospeum italiani. Proteus Rivista di Biologia Sotterranea Bologna, 3, 2–4.Google Scholar
  55. Puillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2012). ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877.CrossRefGoogle Scholar
  56. R Core Team. (2013). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for statistical Computing. URL: (Downloaded on the 20.2.2014)
  57. Rannala, B., & Yang, Z. (2013). Improved reversible jump algorithms for Bayesian species delimitation. Genetics, 194, 245–253.CrossRefGoogle Scholar
  58. Reichenbach, F., Baur, H., & Neubert, E. (2012). Sexual dimorphism in shells of Cochlostoma septemspirale (Caenogastropoda, Cyclophoroidea, Diplommatinidae, Cochlostomatinae). ZooKeys, 208, 1–16.CrossRefGoogle Scholar
  59. Risso, A. (1826). Histoire naturelle des principales productions de l’Europe méridionale et particulièrement de celles des environs de Nice et des Alpes Maritimes. Tome quatrième. – Paris (F.­G. Levrault): pp. 439, 12 plates. [8 November].Google Scholar
  60. Rohlf, F. J. (2017a). tps Utility program version 1.74. Stony brook: Department of Ecology and Evolution, State University of New York. Accessed 24 April 2017
  61. Rohlf, F. J. (2017b). tpsDig 2 version 2.30. Stony Brook: Department of Ecology and Evolution, State University of New York. Accessed 24 April 2017
  62. Romero, P. E., Pfenninger, M., Kano, Y., & Klussmann-Kolb, A. (2016). Molecular phylogeny of the Ellobiidae (Gastropoda: Panpulmonata) supports independent terrestrial invasions. Molecular Phylogenetics and Evolution, 97, 43–54.CrossRefGoogle Scholar
  63. Rossmässler, E. A. (1838). Iconographie der Land- und Süsswasser-Mollusken, mit vorzüglicher Berücksichtigung der europäischen noch nicht abgebildeten Arten. 1: 2 (3/4) (p. 46). Dresden, Leipzig: Arnoldische Buchhandlung.Google Scholar
  64. Schizas, N. V., Street, G. T., Coull, B. C., Chandler, G. T., & Quattro, J. M. (1997). An efficient DNA extraction method for small metazoans. Molecular Marine Biology and Biotechnology, 6(4), 381.Google Scholar
  65. Schmidt, F. J. (1849). Besuch der Sele‘er Grotte, der Berg-Ruine Friedrichsstein bei Gottschee und der Grotten von Podpeč, Kompolje und Laschitz im August 1848. Illyrisches Blatt, 39, 153–154.Google Scholar
  66. Slapnik, R. (1991). Distribution of Zospeum alpestre (Freyer 1855), Z. isselianum Pollonera, 1886 and Z. alpestre bolei ssp. n. (Gastropoda, Carychiidae) and their variability in the caves in Kamnik and Savinja Alps. Razprave − Slovenska akademia znanosti in umetnosti. Razred za naravoslovne vede, 32, 3–73.Google Scholar
  67. Slapnik, R. (1994). Razširjenost rodu Zospeum Bourguignat 1856 (Gastropoda, Pulmonata, Carychiidae) v osamelem krasu vzhodne Slovenjie. Razprave − Slovenska akademija znanosti in umetnosti. Razred za naravoslovne vede, 35(5), 297–335.Google Scholar
  68. Slapnik, R., & Ozimec, R. (2004). Distribution of the genus Zospeum Bourguignat, 1856 (Gastropoda, Pulmonata, Ellobiidae) in Croatia. Natura Croatica, 13(2), 115–135.Google Scholar
  69. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.CrossRefGoogle Scholar
  70. Stossich, A. (1899). Contribuzione alla fauna malacologica terrestre e fluviatile del territorio di Trieste ed in parte delle località contermini. Bollettino della Società adriatica di scienze naturali in Trieste, 19, 17–51.Google Scholar
  71. Stummer, A. (1984). Eine neue Unterart der Höhlenschnecke Zospeum alpestre (Freyer) aus der Kupitzklamm bei Eisenkappel, Kärnten (Basommatophora: Ellobiidae). Heldia, 1(1), 13–14.Google Scholar
  72. Templeton, A. R., Crandall, K. A., & Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics, 132, 619–633.Google Scholar
  73. Wagner, A. J. (1912). Beschreibungen neuer Land- und Süsswasserschnecken aus Südösterreich, Croatien und Bosnien. Verhandlungen des Zoologisch-Botanischen Vereins in Wien, 62, 246–260.Google Scholar
  74. Weigand, A. M. (2013). New Zospeum species (Gastropoda, Ellobioidea, Carychiidae) from 980m depth in the Lukina Jama–Trojama cave system (Velebit Mts., Croatia). Subterranean Biology, 11, 45–53.CrossRefGoogle Scholar
  75. Weigand, A. M., Jochum, A., Pfenninger, M., Steinke, D., & Klussmann-Kolb, A. (2011). A new approach to an old conundrum—DNA barcoding sheds new light on phenotypic plasticity and morphological stasis in microsnails (Gastropoda, Pulmonata, Carychiidae). Molecular Ecology Resources, 11, 255–265.CrossRefGoogle Scholar
  76. Weigand, A. M., Jochum, A., Slapnik, R., Schnitzler, J., Zarza, E., & Klussmann-Kolb, A. (2013). Evolution of microgastropods (Ellobioidea, Carychiidae): integrating taxonomic, phylogenetic and evolutionary hypotheses. BMC Evolutionary Biology, 13, 1–23.CrossRefGoogle Scholar
  77. Yang, Z., & Rannala, B. (2010). Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences, 107, 9264–9269.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2019

Authors and Affiliations

  • Thomas Inäbnit
    • 1
    • 2
    Email author
  • Adrienne Jochum
    • 1
    • 2
  • Marian Kampschulte
    • 3
  • Gunhild Martels
    • 4
  • Bernhard Ruthensteiner
    • 5
  • Rajko Slapnik
    • 6
  • Claudia Nesselhauf
    • 7
  • Eike Neubert
    • 1
    • 2
  1. 1.Natural History Museum of the Burgergemeinde BernBernSwitzerland
  2. 2.Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
  3. 3.Center for Radiology, Department of RadiologyUniversitätsklinikum Giessen und Marburg GmbH-Standort GiessenGiessenGermany
  4. 4.Department of Experimental RadiologyJustus-Liebig University Giessen, Biomedical Research Center Seltersberg (BFS)GiessenGermany
  5. 5.Zoologische Staatssammlung MünchenMunichGermany
  6. 6.KamnikSlovenia
  7. 7.Institute for Ecology, Evolution & DiversityGoethe-UniversityFrankfurt/MGermany

Personalised recommendations