Skip to main content
Log in

Multigene fossil-calibrated analysis of the African lampeyes (Cyprinodontoidei: Procatopodidae) reveals an early Oligocene origin and Neogene diversification driven by palaeogeographic and palaeoclimatic events

Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Here, we present the first molecular and fossil-dated analysis focusing in the Procatopodidae, a widely distributed and little known African oviparous killifish family. The analysis included 36 species representing all Procatopodidae genera except the monotypic Aapticheilichthys. Procatopodidae relationships were established through maximum likelihood and bayesian inference approaches based on fragments of one mitochondrial and five nuclear genes, a total of 5691 bp. The Procatopodidae is herein considered a monophyletic group, sister to the Old world Valenciidae and Aphaniidae. The genus Plataplochilus represent the most basal procatopodid lineage and the brackish water species Aplocheilichthys spilauchen is placed within the Procatopodidae. A clade including the morphologically distinct species of Congopanchax, Lacustricola, and Lamprichthys is herein suggested for the first time, and the genera Micropanchax, Poropanchax, Lacustricola, and Hypsopanchax revealed to be paraphyletic. A fossil-calibrated analysis, based on the same dataset, provided the first information about the evolution of the Procatopodidae in Africa. Our estimates indicate an early Oligocene origin for the Procatopodidae, as a consequence of the Eocene trans-Saharan epicontinental sea retreat, and also indicated that major Neogene paleogeographical and paleoenvironmental events influenced procatopodids diversification (e.g., increase activity in the African rift; late Miocene aridification; Pliocene and Pleistocene climatic instability).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ahl, E. (1924). Neue afrikanische Zahnkarpfen aus dem zoologischen Museum Berlin. Zoologischer Anzeiger, 61, 135–145.

    Google Scholar 

  • Ahl, E. (1927). Neue afrikanische Fische de Familien Anabantidae und Cyprinodontidae. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin, 76–81.

  • Ahl, E. (1928). Beiträge zur Systematik der africanischen Zahnkarpfen. Zoologischer Anzeiger, 79, 115–116.

    Google Scholar 

  • Albert, J. S., & Carvalho, T. P. (2011). Neogene assembly of modern faunas. In J. S. Albert & R. E. Reis (Eds.), Historical Biogeography of Neotropical Freshwater Fishes (pp. 119–136). Berkley and Los Angeles: The Regents of the Univeristy of California.

    Chapter  Google Scholar 

  • Alter, S. E., Brown, B., & Stiassny, M. L. J. (2015). Molecular phylogenetics reveals convergent evolution in lower Congo River spiny eels. BMC Evolutionary Bioloy, 15, 224. https://doi.org/10.1186/s12862-015-0507-x.

    Article  CAS  Google Scholar 

  • Banister, K. E., & Clarke, M. A. (1980). A revision of the large Barbus (Pisces, Cyprinidae) of Lake Malawi with a reconstructionof the history of the southern African Rift Valley lakes. Journal of Natural History, 14(4), 483–542.

    Article  Google Scholar 

  • Beadle, L. C. (1981). The inland waters of tropical Africa. London: Longman.

    Google Scholar 

  • Bobe, R. (2006). The evolution of arid ecosystems in eastern Africa. Journal of Arid Environments, 66, 564–584.

    Article  Google Scholar 

  • Bonne, K. P. M. (2014). Reconstruction of the evolution of the Niger River and implications for sediment supply to the Equatorial Atlantic margin of Africa during the Cretaceous and the Cenozoic. Sediment provenance studies in hydrocarbon exploration and production. Geological Society of London, Special Publication, 386, 327–349.

    Article  Google Scholar 

  • Bragança, P. H. N., & Costa, W. J. E. M. (2018). Time-calibrated molecular phylogeny reveals a Miocene–Pliocene diversification in the Amazon miniature killifish genus Fluviphylax (Cyprinodontiformes: Cyprinodontoidei). Organisms, Diversity and Evolution, 18, 345–353.

    Article  Google Scholar 

  • Bragança, P. H. N., Amorim, P. F., & Costa, W. J. E. M. (2018). Pantanodontidae (Teleostei, Cyprinodontiformes), the sister group to all other cyprinodontoid killifishes as inferred by molecular data. Zoosystematics and Evolution, 94, 137–145.

    Article  Google Scholar 

  • Brown, K. J., Rüber, L., Bills, R., & Day, J. J. (2010). Mastacembelid eels support Lake Tanganyika as an evolutionary hotspot of diversification. BMC Evolutionary Biology, 10, 188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulenger, G. A. (1898). Report on the fishes recently obtained by Mr. J. E. S. Moore in Lake Tanganyika. Proceedings of the Zoological Society of London, 1898, 494–497.

    Google Scholar 

  • Boulenger, G. A., (1904). Descriptions of new West-African freshwater fishes. Annals and Magazine of Natural History (Series 7), 14(79), 16–20.

  • Boulenger, G. A., (1904). On a new cyprinodontid fish from Egypt. Annals and Magazine of Natural History, (Series 7), 14(80), 135–136.

  • Boulenger, G. A. (1906). Fourth contribution to the ichthyology of Lake Tanganyika. Report on the collection of fishes made by Dr. W. A. Cunnington during the Third Tanganyika Expedition, 1904-1905. Transactions of the Zoological Society of London, 17, 537–601.

  • Brüning, C. (1929). Der grüne Leuchtaugenfisch und der afrikanische Glanzkärpfling. Wochenschrift für Aquarienund Terrarienkunde, 26(23), 356.

    Google Scholar 

  • Burke, K. (1996). The African plate. South African Journal of Geology, 99, 341–409.

    Google Scholar 

  • Capart, A. (1949). Sondages et carte bathymétrique du lac Tanganyika. Exploration hydrobiologique du Lac Tanganyika (Vol. II). Brussels: Institut Royal des Sciences Naturelles de Belgique.

    Google Scholar 

  • Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., & Thompson, J. D. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research, 31, 3497–3500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chorowitz, J. (2005). The east African rift system. Journal of African Earth Sciences, 43, 379–410.

    Article  Google Scholar 

  • Clausen, H. S. (1959). Description of two subgenera and six new species of Procatopus Boul., a little known West African genus of cyprinodont fishes. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening, 121, 261–291.

    Google Scholar 

  • Clausen, H. S. (1967). Tropical Old World cyprinodonts. Copenhagen: Akademisk Forlag.

    Google Scholar 

  • Cohen, A. S., Lezzar, K. E., Tiercelin, J. J., & Soreghan, M. (1997). New paleogeographic and lake−level reconstructions of Lake Tanganyika: implications for tectonic, climatic and biological evolution in a rift lake. Basin Research, 7, 107–132.

    Article  Google Scholar 

  • Conway, K. W., & Moritz, T. (2006). Barboides britzi, a new species of miniature cyprinid from Benin (Ostariophysi: Cyprinidae), with a neotype designation for B. gracilis. Ichthyological Exploration of Freshwaters., 17, 73–86.

    Google Scholar 

  • Collier, G. E., Murphy, W. J., & Espinoza, M. (2009). Phylogeography of the genus Epiplatys (Aplocheiloidea: Cyprinodontiformes). Molecular Phylogenetics and Evolution, 50, 190–196.

    Article  CAS  PubMed  Google Scholar 

  • Costa, W. J. E. M. (1996). Relationships, monophyly and three new species of the neotropical miniature poeciliid genus Fluviphylax (Cyprinodontiformes: Cyprinodontoidei). Ichthyological Exploration of Freshwaters, 7, 111–130.

    Google Scholar 

  • Costa, W. J. E. M. (1998). Phylogeny and classification of the Cyprinodontiformes (Euteleostei: Atherinomorpha): a reppraisal. In L. R. Malabarba, R. E. Reis, R. P. Vari, Z. M. S. Lucena, & C. A. S. Lucena (Eds.), Phylogeny and classification of Neotropical fishes (pp. 537–560). Edipucrs: Porto Alegre.

    Google Scholar 

  • Costa, W. J. E. M. (2012). Oligocene killifishes (Teleostei: Cyprinodontiformes) from southern France: relationships, taxonomic position, and evidence of internal fertilization. Vertebrate Zoology, 62, 371–386.

    Google Scholar 

  • Costa, W. J. E. M. (2018). Comparative morphology, phylogeny and classification of African seasonal killifishes of the tribe Nothobranchiini (Cyprinodontiformes: Aplocheilidae). Zoological Journal of the Linnean Society, 20, 1–21.

    Google Scholar 

  • Costa, W. J. E. M., Amorim, P. F., & Mattos, J. L. O. (2017). Molecular phylogeny and timing of diversification in South American Cynolebiini seasonal killifishes. Molecular Phylogenetics and Evolution, 116, 61–68.

    Article  PubMed  Google Scholar 

  • Danley, P. D., Husemann, M., Ding, B., DiPietro, L. M., Beverley, E. J., & Peppe, D. J. (2012). The impact of the geological and paleoclimate on the diversification of East African cichlids. International Journal of Evolutionary Biology, 2012, 574851.

    Article  PubMed  PubMed Central  Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day, J. J., & Wilkinson, M. (2006). On the origin of the Synodontis catfish species flock from Lake Tanganyika. Biology Letters, 2, 548–552.

    Article  PubMed  PubMed Central  Google Scholar 

  • Day, J. J., Peart, C. R., Brown, K. J., Friel, J. P., Bills, R., & Moritz, T. (2013). Continental diversification of an African catfish radiation (Mochokidae: Synodontis). Systematic Biology, 62, 351–365.

    Article  PubMed  Google Scholar 

  • Day, J. J., Fages, A., Brown, K. J., Vreven, E. J., Stiassny, M. L. J., Bills, R., Friel, J. P., & Rüber, L. (2017). Multiple independent colonizations into the Congo Basin during the continental radiation of African Mastacembelus spiny eels. Journal of Biogeography, 44, 2308–2318.

    Article  Google Scholar 

  • Decru, E., Vreven, E., & Snoeks, J. (2017). The occurence of an Eastern African haplochromine cichlid in the Ituri River (Aruwimi, Congo basin): adaptive divergence in an introduced species? Hydrobiologia, 791, 209–220.

    Article  Google Scholar 

  • deMenocal, P. B. (1995). Plio−Pleistocene African climate. Science, 270, 53–59.

    Article  CAS  PubMed  Google Scholar 

  • deMenocal, P. B. (2004). African climate change and faunal evolution during the Pliocene−Pleistocene. Earth and Planetary Science Letters, 220, 3–24.

    Article  CAS  Google Scholar 

  • Dorn, A., Musilová, Z., Platzer, M., Reichwald, K., & Cellerino, A. (2014). The strange case of East African annual fishes: aridification correlates with diversification for a savannah aquatic group? BMC Evolutionary Biology, 14, 210.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duméril, A. H. A. (1861). Poissons de la côte occidentale d'Afrique. Archives du Muséum d'Histoire Naturelle, 10, 241–268.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Article  PubMed  Google Scholar 

  • Fitton, J. G. (1987). The Cameroon line, West Africa: a comparison between oceanic and continental alkaline volcanism. Geological Society of London, Special Publication, 30, 273–291.

    Article  Google Scholar 

  • Fjeldså, J., & Bowie, R. C. K. (2008). New perspectives on the origin and diversification of Africa’s forest avifauna. African Journal of Ecology, 46, 235–247.

    Article  Google Scholar 

  • Fjeldså, J., & Lovett, J. C. (1997). Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. Biodiversity and Conservation, 6, 325–346.

    Article  Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.

    CAS  PubMed  Google Scholar 

  • Forest, F. (2009). Calibrating the tree of life: fossils, molecules and evolutionary timescales. Annals of Botany, 104, 789–794.

    Article  PubMed  PubMed Central  Google Scholar 

  • Freyhof, J., Kärst, H., & Geiger, M. (2014). Valencia robertae, a new killifish from southern Greece (Cyprinodontiformes: Valenciidae). Ichthyological Exploration of Freshwaters, 24, 289–298.

    Google Scholar 

  • Gaudant, J. (2009a). Note complementaire sur l’ichthyofaune oligocène de Seifhennersdorf (Saxe, Allemagne) et de Varnsdorf, Kundratice, Lbı’n, Skalice, Knı’zˇecı´, etc.(Bohême, Re’publique tchèque). Annalen des Naturhistorischen Museums in Wien Serie A, Mineralogie, Petrologie, Geologie, Paläontologie, Archäozoologie, Anthropologie, und Prähistorie, 111A, 281–312.

    Google Scholar 

  • Gaudant, J. (2009b). Occurence of the genus Aphanius Nardo (Cyprinodontid fishes) in the lower Miocene of the Cheb Basin (Czech Republic) with additional notes on Prolebias egeranus Laube. Journal of The National Museum (Prague). Natural History Series, 177(8), 83–90.

    Google Scholar 

  • Gernhard, T. (2008). The conditioned reconstruction process. Journal of Theoretical Biology, 253, 769–778.

    Article  PubMed  Google Scholar 

  • Ghedotti, M. J. (2000). Phylogenetic analysis and taxonomy of the poecilioid fishes (Teleostei: Cyprinodontiformes). Zoological Journal of the Linnean Society, 130, 1–53.

    Article  Google Scholar 

  • Gill, T. N. (1862). On the West African genus Hemichromis and descriptions of new species in the museums of the Academy and Smithsonian Institution. Proceedings of the Academy of Natural Sciences of Philadelphia, 14, 134–139.

    Google Scholar 

  • Giraud, R., Bosworth, W., Thierry, J., & Delplanque, A. (2005). Phanerozoic geological evolution of Northern African and Central Africa: an overview. Journal of African Earth Sciences, 43, 83–143.

    Article  Google Scholar 

  • Giresse, P. (2005). Mesozoic−Cenozoic history of the Congo Basin. Journal of African Earth Sciences, 43, 301–315.

    Article  Google Scholar 

  • Goodier, S. A. M., Cotterill, F. P. D., O'Ryan, C., Skelton, P. H., & de Wit, M. J. (2011). Cryptic diversity of African Tigerfish (genus Hydrocynus) reveals palaeogeographic signatures of linked neogene tectonic events. PLoS One, 6, e28775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood, P. H. (1987). The genera of pelmatochromine fishes (Teleostei, Cichlidae). A phylogenetic review. Bulletin of the British Museum (Natural History) Zoology, 53(3), 139–203.

    Google Scholar 

  • Helmstetter, A. J., Papadopulos, A. S. T., Igea, J., Van Dooren, T. J. M., Leroi, A. M., & Savolainen, V. (2016). Viviparity stimulates diversification in an order of fish. Nature Communications, 7, 11271. https://doi.org/10.1038/ncomms11271.

  • Hrbek, T., & Meyer, A. (2003). Closing the Tethys Sea and the phylogeny of Eurasian killfishes (Cyprinodontiformes: Cyprinodontidae). Journal of Evolutionary Biology, 16, 17–36.

    Article  CAS  PubMed  Google Scholar 

  • Hrbek, T., Seckinger, J., & Meyer, A. (2007). A phylogenetic and biogeographic perspective on the evolution of poeciliid fishes. Molecular Phylogenetics and Evolution, 43, 986–998.

    Article  CAS  PubMed  Google Scholar 

  • Huber, J. H. (1982). A review of the cyprinodont fauna of the coastal plain in Rio Muni, Gabon, Congo, Cabinda, and Zaire, with taxonomic shifts in Aphyosemion, Epiplatys and West African Procatopodins. London: British Killifish Association.

    Google Scholar 

  • Huber, J. H. (1999). Updates to the phylogeny and systematics of the African lampeye schooling cyprinodonts (Cyprinodontiformes: Aplocheilichthyinae). Cybium, 23, 53–77.

    Google Scholar 

  • Huber, J. H. (2007). Procatopus websteri: a new species of lampeye killifish from Akaka camp, western Gabon (Teleostei: Poeciliidae: Aplocheilichthyinae), exhibiting similarities of pattern and morphology with another sympatric lampeye species, Aplocheilichthys spilauchen. Tropical Fish Hobbyist Magazine, 55, 110–114.

    Google Scholar 

  • Huber, J. H. (2011). Description of Aapticheilichthys, nov. gen., a new monotypic fish genus of lampeyes (Cyprinodontiformes: Poeciliidae) from western Africa. Killi-Data Series, 2011, 4–9.

    Google Scholar 

  • Klausewitz, W. (1957). Barbus schneemanni und Aplocheilichthys maculatus, zwei neue Fische aus Ost-Afrika (Pisces, Cyprinidae und Cyprinodontidae). Senckenbergiana Biologica, 38, 279–282.

    Google Scholar 

  • Kolbmüller, S., Strurmbauer, C., Verheyen, E., Meyer, A., & Salzburger, A. (2006). Mitochondrial phylogeny and phylogeography of East African squeaker catfish (Siluriformes: Synodontis). BMC Evolutionary Biology, 6, 49.

    Article  CAS  Google Scholar 

  • Koubínová, D., Irwin, N., Hulva, P., Koubek, P., & Zima, J. (2013). Hidden diversity in Senegalese bats and associated findings in the systematics of the family Vespertilionidae. Frontiers in Zoology, 10, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lévêque, C. (1997). Biodiversity dynamics and conservation: the freshwater fish of tropical Africa. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lévêque, C. (2006). Biogéographie. In C. Lévêque & D. Paugy (Eds.), Les poissons des eaux continentales africaines: Diversité, écologie, utilisation par l'homme (pp. 75–88). Paris: IRD Editions.

    Google Scholar 

  • Lévêque, C., Paugy, D., & Teugels, G. G. (1991). Annotated check−list of the freshwater fishes of the Nilo−sudan river basins. Revue d'Hydrobiologie tropicale, 24, 131–154.

    Google Scholar 

  • Li, C., Ortí, G., Zhang, G., & Lu, G. (2007). A practical approach to phylogenomics: the phylogeny of ray−finned fish (Actinopterygii) as a case study. BMC Evolutionary Biology, 7, 44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López, J. A., Chen, W. J., & Ortí, G. (2004). Esociform phylogeny. Copeia, 3, 449–564.

    Article  Google Scholar 

  • Lorenzen, E. D., Heller, R., & Siegismund, H. R. (2012). Comparative phylogeography of African savannah ungulates. Molecular Ecology, 21, 3656–3670.

    Article  CAS  PubMed  Google Scholar 

  • Lovett, J. C. (1993). Eastern Arc moist forest flora. In J. C. Lovett & S. K. Wasser (Eds.), Biography and ecology of the rain forests of eastern Africa (pp. 33–35). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Lundberg, J. G., Marshall, L. G., Guerrero, J., Horton, B., Malabarba, M. C. S. L., & Wesselingh, F. (1998). The stage for Neotropical fish diversification: a history of tropical South American rivers. In L. R. Malabarba, R. E. Reis, R. P. Vari, Z. M. S. Lucena, & C. A. S. Lucena (Eds.), Phylogeny and Classification of Neotropical fishes (pp. 13–48). Porto Alegre: Edipucrs.

    Google Scholar 

  • Macgregor, D. (2015). History of the development of the East African Rift System: A series of interpreted maps trough time. Journal of African Earth Sciences, 101, 232–252.

    Article  Google Scholar 

  • Maley, J. (1996). The African rainforest: main characteristics of changes in vegetation and climate from the Upper−Cretaceous to the Quaternary. Proceedings of the Royal Society of Edimburgh Section B, 104, 31–73.

    Article  Google Scholar 

  • Malier, M. (1958). Recherches hydrobiologiques au lac Tumba (Congo Belge, Province de l’Equateur). Hydrobiologia, 10, 352–385.

    Article  Google Scholar 

  • Mayden, R. L. (1988). Vicariance biogeography, parsimony, and evolution in North American freshwater fishes. Systematic Zoology Journal, 37, 329–355.

    Article  Google Scholar 

  • Meinken, H. (1932). Über einige neue Zahnkarpfen aus dem tropischen Westafrika. Blätter für Aquarien- und Meinken, H. (1932). Über einige neue Zahnkarpfen aus dem tropischen Westafrika. Blätter für Aquarien- und Terrarienkunde, 43(4), 53–58.

    Google Scholar 

  • Myers, G. S. (1924). New genera of African poeciliid fishes. Copeia, 129, 42–43.

    Google Scholar 

  • Myers, G. S. (1928). Two new genera of fishes. Copeia, 166, 7–8.

    Google Scholar 

  • Myers, G. S. (1931). The primary groups of oviparous cyprinodont fishes, order Cyprinodontes (Microcyprini). Stanford University Publications, 6, 1–14.

    Google Scholar 

  • Myers, G. S. (1938). Studies on the genera of cyprinodont fishes. XIV. Aplocheilichthys and its relatives in Africa. Copeia, 1938, 136–143.

    Article  Google Scholar 

  • Myers, G. S. (1955). Notes on the classification and names of cyprinodont fishes. Tropical Fish Hobbyist Magazine, 4, 7.

    Google Scholar 

  • Nardo, G. D. (1827). Prodromus observationum et disquisitionum Adriaticae ichthyologiae. Giornale di fisica, chimica e storia naturale, medicina, ed arti. (series 2), 10, 22–40.

    Google Scholar 

  • Nesi, N., Kadjo, B., Pourrut, X., Leroy, E., Shongo, C. P., Cruaud, C., & Hassanin, A. (2013). Molecular systematics and phylogeography of the tribe Myonycterini (Mammalia, Pteropodidae) infered from mitochondrial and nuclear markers. Molecular Phylogenetics and Evolution, 66, 126–137.

    Article  PubMed  Google Scholar 

  • Nichols, J. T., & Griscom, L. (1917). Fresh-water fishes of the Congo basin obtained by the American Museum Congo expedition, 1909-1915. Bulletin of the American Museum of Natural History, 37, 653–756.

    Google Scholar 

  • Nicolas, V., Missoup, A.–. D., Colyn, M., Cruaud, C., & Denys, C. (2012). West−Central African Pleistocene lowland forest evolution revealed by the Phylogeography of Missone’s soft−furred mouse. African Zoology, 47, 100–112.

    Google Scholar 

  • Obaje, N. G. (2009). Geology and mineral resources of Nigeria. Berlin: Springer.

    Book  Google Scholar 

  • Obrhelová, N. (1985). Osteologie a ekologie dvou druhu rodu Prolebias Sauvage (Pisces, Cyprinodontidae) v Zapadoceskem spodnim miocenu. Sborník Národního Muzea v Praze, 41B, 85–140.

    Google Scholar 

  • Otero, O. (2010). What controls the freshwater fish fossil record? A focus on the late cretaceous and tertiary of Afro−Arabia. Cybium, 34, 93–113.

    Google Scholar 

  • Pappenheim, P., & Boulenger, G. A. (1914). Fische. - Wissenschaftliche Ergebnisse der deutschen Zentral-Afrika Expedition, 1907-1908, 5, 225–260.

  • Parenti, L. R. (1981). A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei, Atherinomorpha). Bulletin of the American Musesum of Natural History, 168, 335–357.

    Google Scholar 

  • Parham, J. F., Donoghue, P. C., Bell, C. J., Galway, T. D., Head, J. J., Holroyd, P. A., et al. (2012). Best practices for justifying fossil calibrations. Systematic Biology, 62, 346–359.

    Article  Google Scholar 

  • Peart, C. R., Bills, R., Wilkinson, M., & Day, J. J. (2014). Nocturnal claroteine catfishes reveal dual colonisation but a single radiation in Lake Tanganyika. Molecular Phylogenetics and Evolution, 73, 119–128.

    Article  PubMed  Google Scholar 

  • Pellegrin, J. (1904). Contribution à l'étude anatomique, biologique et taxinomique des poissons de la famille des Cichlidés. Mémoires de la Société Zoologique de France, 16, 41–400.

  • Pinton, A., Agnese, J.–. F., Paugy, D., & Otero, O. (2013). A large−scale phylogeny of Synodontis (Mochokidae, Siluriformes) reveals the influence of geological events on continental diversity during the Cenozoic. Molecular Phylogenetics and Evolution, 66, 1027–1040.

    Article  PubMed  Google Scholar 

  • Plana, V. (2004). Mechanisms and tempo of evolution in the African Guineo−Congolian rainforest. Philosophical Transactions of the Royal Society London B Biological Sciences, 359, 1585–1594.

    Article  Google Scholar 

  • Pohl, M., Milvertz, F. C., Meyer, A., & Vences, M. (2015). Multigene phylogeny of cyprinodontiform fishes suggests continental radiations and a rogue taxon position of Pantanodon. Vertebrate Zoology, 65, 37–44.

    Google Scholar 

  • Poll, M. (1938). Poissons du Katanga (bassin du Congo) récoltés par le professeur Paul Brien. Revue de Zoologie et de Botanique Africaines, 30(4), 389–423.

    Google Scholar 

  • Poll, M. (1952a). Notes sur les Cyprinodontidae du Musée du Congo belge. deuxiéme partie: les Aplocheilichthyini et les Lamprichthyini. Revue de Zoologie et de Botanique Africaine, 45, 292–305.

    Google Scholar 

  • Poll, M. (1952b). Notes sur les Cyprinodontidae de Léopoldville avec description d'une espèce nouvelle du genre Epiplatys. Revue de Zoologie et de Botanique Africaines, 46, 295–300.

    Google Scholar 

  • Poll, M. (1971). Un genre nouveau et une espece nouvelle de Cyprinodontidae congolaise. Revue de Zoologie et de Botanique Africaine, 83, 303–308.

    Google Scholar 

  • Poll, M., & Lambert, J. G. (1965). Contribution a L’etude systematic et zoogeographique des Procatopodinae de L’Afrique central (Pisces, Cyprinodontidae). Bulletin des Séances. Académie Royale des Sciences d'Outre-Mer, 2, 615–631.

    Google Scholar 

  • Pollux, B. J. A., Meredith, R. W., Springer, M. S., Garland, T., & Reznick, D. N. (2014). The evolution of the placenta drives a shift in sexual selection in livebearing fish. Nature, 513, 233–236.

    Article  CAS  PubMed  Google Scholar 

  • Reichenbacher, B., & Kowalke, T. (2009). Neogene and present-day zoogeography of killifishes (Aphanius and Aphanolebias) in the Mediterranean and Paratethys areas. Palaeogeography Palaeoclimatology Palaeoecology, 281, 43–56.

    Article  Google Scholar 

  • Reznick, D. N., Furness, A. I., Meredith, R. W., & Springer, M. S. (2017). The origin and biogeographic diversification of fishes in the family Poeciliidae. PLoS One, 12, e0172546. https://doi.org/10.1371/journal.pone.0172546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ring, U. (2008). The extreme uplift of the Rwenzori Mountains in the East African Rift, Uganda: structural framework and possible role of glaciations. Tectonics, 27, TC4018. https://doi.org/10.1029/2007TC002176.

  • Roberts, T. R. (1970). Description, osteology, and relationships of the Amazonian cyprinodont fish Fluviphylax pygmaeus. Breviora, 347, 1–28.

    Google Scholar 

  • Roberts, T. R. (1972). Ecology of the fishes in the Amazon and Congo basins. Bulletin of the Museum of Comparative Zoology, 143, 117–147.

    Google Scholar 

  • Roberts, T. R. (1975). Geographical distribution of African freshwater fishes. Zoological Journal of the Linnean Society, 57, 249–319.

    Article  Google Scholar 

  • Roman, B. (1970). Nuevas especies de peces de Río Muni (Guinea Ecuatorial). Publicaciones del Instituto de Biología Aplicada Barcelona, 49, 5–23.

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Hohna, S., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Runge, J. (2001). Landschafsgenese und Palaoklima in Zentralafrika. Relief, Boden, Palaoklima, 17, 1–294.

    Google Scholar 

  • Runge, J. (2007). The Congo River, Central Africa. In A. Gupta (Ed.), Geomorphology and Management (pp. 293–309). Chichester: John Wiley and Sons Ltd..

    Google Scholar 

  • Salzburger, W., Bocxlaer, B. V., & Cohen, A. S. (2014). Ecology and evolution of the African Great Lakes and their faunas. Annual Review of Ecology, Evolution, and Systematics, 45, 519–545.

    Article  Google Scholar 

  • Sauvage, H. E. (1874). Notice sur les poissons tertiares del’ Auvergne. Bulletin de la Société d’Histoire Naturelle de Toulouse, 8, 171–198.

    Google Scholar 

  • Seegers, L. (1984). Zwei Formen der Gattung Aplocheilichthys Bleeker, 1863 aus dem Küstentiefland von Tanzania, mit der Wiederbeschreibung von & Aplocheilichthys kongoranensis (Ahl, 1924) (Pisces: Cyprinodontidae: Procatopodinae). Ichthyologische Ergebnisse aus Tanzania, V. Revue de Zoologie Africaine, 98(1), 74–96.

  • Schliewen, U. K., & Stiassny, M. L. J. (2006). A new species of Nanochromis (Teleostei: Cichlidae) from Lake Mai Ndombe, central Congo Basin, Democratic Republic of Congo. Zootaxa, 1169, 33–46.

    Article  Google Scholar 

  • Scholz, C. A., & Rosendahl, B. R. (1988). Low lake stands in lakes Malawi and Tanganyika, East Africa, delineated with multifold seismic data. Science, 240, 1645–1648.

    Article  CAS  PubMed  Google Scholar 

  • Schultheiẞ, R., Van Bocxlaer, B., Riedel, F., von Rintelen, T., & Albrecht, C. (2014). Disjunct distributions of freshwater snails testify a central role of the Congo system in shaping biogeographical patterns in Africa. BMC Evolutionary Biology, 14, 42.

    Article  Google Scholar 

  • Schwarzer, J., Misof, B., Ifuta, S. N., & Schliewen, U. K. (2011). Time and origin of cichlid colonization of the lower Congo rapids. PLoS One, 6, e22380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarzer, J., Swartz, E. R., Vreven, E., Snoeks, J., Cotterill, F. P. D., Misof, B., & Schiewen, U. K. (2012). Repeated trans−watershed hybridization among haplochromine cichlids (Cichlidae) was triggered by Neogene landscape evolution. Proceedings of the Royal Society of London B: Biological Sciences, 279, 4389–4398.

    Article  Google Scholar 

  • Schwarzer, J., Lamboj, A., Langen, K., Misof, B., & Schliewen, U. K. (2014). Phylogeny and age of chromidotilapiine cichlids (Teleostei: Cichlidae). Hydrobiologia, 748, 185–199. https://doi.org/10.1007/s10750-014-1918-1.

    Article  CAS  Google Scholar 

  • Sépulchre, P., Ramstein, G., Fluteau, F., Schuster, M., Tiercelin, J. J., & Brunet, M. (2006). Tectonic uplift and Eastern Africa Aridification. Science, 313, 1419–1423.

    Article  CAS  PubMed  Google Scholar 

  • Shirley, M. H., Vliet, K. A., Carr, A. N., & Austin, J. D. (2013). Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservations. Proceedings of the Royal Society of London B: Biological Sciences, 281, 2013–2483.

    Google Scholar 

  • Skelton, P. H., & Swartz, E. R. (2011). Walking the tightrope: trends in African freshwaters systematics ichthyology. Journal of Fish Biology, 79, 1413–1435.

    Article  CAS  PubMed  Google Scholar 

  • Smith, G. R. (1981). Late Cenozoic freshwater fishes of North America. Annual Review of Ecology and Systematics, 12, 163–193.

    Article  Google Scholar 

  • Sommerfeld, A., Prömmel, K., & Cubasch, U. (2016). The East African Rift System and the impact of orographic changes on regional climate and the resulting aridification. International Journal of Earth Sciences, 105, 1779–1794.

    Article  CAS  Google Scholar 

  • Stankiewicz, J., & de Wit, M. J. (2006). A proposed drainage evolution model for Central Africa−did the Congo flow east? Journal of African Earth Sciences, 44, 75–84.

    Article  Google Scholar 

  • Stanley, W. T., Rogers, M. A., & Hutterer, R. (2005). A new species of Congosorex from the Eastern Arc Mountains, Tanzania, with significant biogeographical implications. Journal of Zoology, 265, 269–280.

    Article  Google Scholar 

  • Steindachner, F. (1881). Ichthyologische Beiträge X. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe, 83(1), 179–219.

    Google Scholar 

  • Stiassny, M. L. J., & Schliewen, U. K. (2007). Congochromis, a new cichlid genus (Teleostei: Cichlidae) from central Africa, with the description of a new species from the upper Congo River, Democratic Republic of Congo. American Museum Novitates, 3576, 1–14.

    Article  Google Scholar 

  • Swartz, E. R., Skelton, P. H., & Bloomer, P. (2007). Sea−level changes, river capture and the evolution of populations of the Eastern Cape and firey redfins (Pseudobarbus afer and Pseudobarbus phlegethon, Cyprinidae) across multiple river systems in South Africa. Journal of Biogeography, 34, 2086–2099.

    Article  Google Scholar 

  • Swartz, E. R., Mwale, M., & Hanner, R. (2008). A role for barcoding in the study of Africa fish diversity and conservation. South African Journal of Science, 104, 293–298.

    Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trape, S. (2013). A study of the relict fish fauna of northern Chad, with the first records of a polypterid and a poeciliid in the Sahara desert. Comptes Rendus Biologies, 336, 582–587.

    Article  PubMed  Google Scholar 

  • Ubangoh, R. U., Pacca, I. G., & Nyobe, J. B. (1998). Palaeomagmatism of the continental sector of the Cameroon Volcanic Line, West Africa. Geophysical Journal International, 135, 362–374.

    Article  Google Scholar 

  • Van Damme, D., & Pickford, M. (1995). The late Cenozoic Ampullariidae (Mollusca, Gastropoda) of the Albertine Rift Valley (Uganda−Zaire). Hydrobiologia, 316, 1–32.

    Article  Google Scholar 

  • Van Damme, D., & Pickford, M. (1999). The late Cenozoic Viviparidae (Mollusca, Gastropoda) of the Albertine Rift Valley (Uganda−Zaire). Hydrobiologia, 390, 171–217.

    Article  Google Scholar 

  • Van der Zee, J. R., Sonnnenberg, R., & Munene, J. J. M. M. (2015). Hypsopanchax stiassnyae, a new poeciliid fish from the Lulua River (Democratic Republic of Congo) (Teleostei: Cyprinodontiformes). Ichthyological Exploration of Freshwaters, 26, 87–96.

    Google Scholar 

  • Veatch, A. C. (1935). Evolution of the Congo Basin. Memoirs of the Geological Society of America, 3, 1–183.

    Article  Google Scholar 

  • Weiss, J. D., Cotteril, F. P. D., & Schliewen, U. K. (2015). Lake Tanganyika−A ‘Melting Pot’ of ancient and young cichlid lineages (Teleostei: Cichlidae)? PLoS One, 10, e0125043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitley, G. P. (1965). Some fish genera scrutinized. Proceedings of the Royal Zoological Society of New South Wales, 85, 25–26.

    Google Scholar 

  • Wiese, B. (1980). Zaire-Landesnatur, Bevolkerung, Wirtschaft. Wiss Landerk, 15, 1–360.

    Google Scholar 

  • Wildekamp, R. H. (1977). Beschreibung von zwei neuen Leuchtaugenfischen aus Tansania (Cyprinodontidae. Procatopodinae. Aplocheilichthys). Aquarienfreund, 6(6), 103–116.

    Google Scholar 

  • Wildekamp, R. H. (1995). A world of killies, atlas of the oviparous cyprinodontiform fishes of the world (Vol. 2). Mishawaka: American Killifish Association.

    Google Scholar 

  • Wildekamp, R. H. (2004). A world of killies. Atlas of the oviparous cyprinodontiform fishes of the world (Vol. 4). Mishawaka: American Killifish Association.

    Google Scholar 

  • Wildekamp, R. H., & Malumbres, F. J. (2004). Identification of Micropanchax scheeli (Cyprinodontiformes: Poeciliidae: Aplocheilichthyinae) with the description of a new species of the genus Poropanchax. Cybium, 28(1), 61–67.

    Google Scholar 

  • Wildekamp, R. H., Romand, R., & Scheel, J. J. (1986). Cyprinodontidae. In J. Daget, J.–. P. Gosse, & T. van den Audenaerde (Eds.), Check−list of the freshwater fishes of Africa 2 (CLOFFA 2) (pp. 165–276). Brussels, Tervuren, Paris: ISNB, MRAC, ORSTOM.

    Google Scholar 

  • Williams, C. J. R., & Kniveton, D. R. (2011). African climate and climate change: physical, social and political perspectives. London: Springer.

    Book  Google Scholar 

  • Wilson, A. B., Teugels, G. G., & Meyer, A. (2008). Marine incursion: the freshwater herring of Lake Tanganyika are the product of a marine invasion into West Africa. PLoS One, 3, e1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, X. H. (2013). Dambe5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 30, 1720–1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, X. H., Xie, Z., Salemi, M., Chen, L., & Wang, Y. (2003). An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 26, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Yamanoue, Y., Mika, M., Doi, H., Mabuchi, K., Sakai, H., & Nishida, M. (2011). Multiple invasions into freshwater by pufferfishes (teleostei: tetraodontidae): a mitogenomic perspective. PLoS One, 6, e17410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimkus, B. M. (2009). Biogeographical analysis of Cameroonian puddle frogs and description of a new species Phrynobatrachus (Anura: Phrynobatrachidae) endemic to Mount Oku, Cameroon. Zoological Journal of the Linnean Society, 157, 795–813.

    Article  Google Scholar 

  • Zwickl, D.J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin.

Download references

Acknowledgments

We are grateful to J-F. Agnèse, R. Bayer, H. Kärst, B. Nagy, R. Numrich, H. Ott, E. Purzl, R. Sonnenberg, T. Terceira, J. Vandermissen, J. Van der Zee, R. Wildekamp, and T. Woeltjs for donating specimens and/or providing pictures, and to I. Eidus, Z. Gabsi, G. Lenglet, J. Maclaine, M. Parrent, P. Pruvost, J. Snoeks, E. Vreven, and T. Walschaerts for hospitality during visits to their institutions and/or for the loan of specimens. We are also grateful to P. Amorim, A. Katz, and J. Mattos for laboratorial assistance during molecular analysis and to E. Henschel for reading a preliminary version of the manuscript. Part of this study was conducted by PHNB during a long-term stay at MRAC; special thanks to J. Snoeks and E. Vreven for providing fine conditions to develop researches in their institution, and to E. Abwe, J. Bamps, E. Decru, C. Garin, K. Kise, B. Mafuta, B. Manda, T. Musschoot, A. Nackaerts, M. Parrent, M. Van Steenberge, and A. Zamba for the daily help and technical assistance in MRAC. Some of the specimens included in this study were collected during expeditions supported by PRODEPAAK (NN/3000769) a Belgian Development Cooperation (BDC) project (2008-2013) for financial and logistical support to the Katanga Expedition 2012, and by the Mbisa Congo project (2013-2018) a framework agreement project of the RMCA with the Belgian Development Cooperation (BDC).

Funding

This study was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico – Ministério de Ciência e Tecnologia; grant 141813/2014-8 to PHNB, and 307349/2015-2 and 200627/2015-5 to WJEMC); and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, grant 99999.003613/2015-01 to PHNB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro H. N. Bragança.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Submission declaration and verification

We declare that the manuscript in not under consideration for publication elsewhere and that it was approved by both authors that completely agree with its content. Also, if the manuscript is accepted it will not be published elsewhere in the same form or in another language.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Online Resource 1

Representativeness of Procatopodidae genera included in the present study. The symbol (T) refers to genus type species. (XLSX 12 kb)

Online Resource 2

Included specimens, GenBank accession numbers and localities (XLSX 17 kb)

Online Resource 3

ML performed in Garli 2.0 and BI analysis performed in MrBayes v3.2.5 including both nuclear and mitochondrial partitions. (PDF 2346 kb)

Online Resource 4

Time analysis performed in BEAST v.1.8 including both nuclear and mitochondrial partitions. (PDF 2514 kb)

Online Resource 5

Posterior probability support values of the time analysis performed in BEAST v.1.8 including only nuclear partitions. (PDF 1155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragança, P.H.N., Costa, W.J.E.M. Multigene fossil-calibrated analysis of the African lampeyes (Cyprinodontoidei: Procatopodidae) reveals an early Oligocene origin and Neogene diversification driven by palaeogeographic and palaeoclimatic events. Org Divers Evol 19, 303–320 (2019). https://doi.org/10.1007/s13127-019-00396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-019-00396-1

Keywords

Navigation