Organisms Diversity & Evolution

, Volume 19, Issue 2, pp 303–320 | Cite as

Multigene fossil-calibrated analysis of the African lampeyes (Cyprinodontoidei: Procatopodidae) reveals an early Oligocene origin and Neogene diversification driven by palaeogeographic and palaeoclimatic events

  • Pedro H. N. BragançaEmail author
  • Wilson J. E. M. Costa
Original Article


Here, we present the first molecular and fossil-dated analysis focusing in the Procatopodidae, a widely distributed and little known African oviparous killifish family. The analysis included 36 species representing all Procatopodidae genera except the monotypic Aapticheilichthys. Procatopodidae relationships were established through maximum likelihood and bayesian inference approaches based on fragments of one mitochondrial and five nuclear genes, a total of 5691 bp. The Procatopodidae is herein considered a monophyletic group, sister to the Old world Valenciidae and Aphaniidae. The genus Plataplochilus represent the most basal procatopodid lineage and the brackish water species Aplocheilichthys spilauchen is placed within the Procatopodidae. A clade including the morphologically distinct species of Congopanchax, Lacustricola, and Lamprichthys is herein suggested for the first time, and the genera Micropanchax, Poropanchax, Lacustricola, and Hypsopanchax revealed to be paraphyletic. A fossil-calibrated analysis, based on the same dataset, provided the first information about the evolution of the Procatopodidae in Africa. Our estimates indicate an early Oligocene origin for the Procatopodidae, as a consequence of the Eocene trans-Saharan epicontinental sea retreat, and also indicated that major Neogene paleogeographical and paleoenvironmental events influenced procatopodids diversification (e.g., increase activity in the African rift; late Miocene aridification; Pliocene and Pleistocene climatic instability).


Killifish Africa Cyprinodontiformes Systematics Procatopodidae 



We are grateful to J-F. Agnèse, R. Bayer, H. Kärst, B. Nagy, R. Numrich, H. Ott, E. Purzl, R. Sonnenberg, T. Terceira, J. Vandermissen, J. Van der Zee, R. Wildekamp, and T. Woeltjs for donating specimens and/or providing pictures, and to I. Eidus, Z. Gabsi, G. Lenglet, J. Maclaine, M. Parrent, P. Pruvost, J. Snoeks, E. Vreven, and T. Walschaerts for hospitality during visits to their institutions and/or for the loan of specimens. We are also grateful to P. Amorim, A. Katz, and J. Mattos for laboratorial assistance during molecular analysis and to E. Henschel for reading a preliminary version of the manuscript. Part of this study was conducted by PHNB during a long-term stay at MRAC; special thanks to J. Snoeks and E. Vreven for providing fine conditions to develop researches in their institution, and to E. Abwe, J. Bamps, E. Decru, C. Garin, K. Kise, B. Mafuta, B. Manda, T. Musschoot, A. Nackaerts, M. Parrent, M. Van Steenberge, and A. Zamba for the daily help and technical assistance in MRAC. Some of the specimens included in this study were collected during expeditions supported by PRODEPAAK (NN/3000769) a Belgian Development Cooperation (BDC) project (2008-2013) for financial and logistical support to the Katanga Expedition 2012, and by the Mbisa Congo project (2013-2018) a framework agreement project of the RMCA with the Belgian Development Cooperation (BDC).

Funding information

This study was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico – Ministério de Ciência e Tecnologia; grant 141813/2014-8 to PHNB, and 307349/2015-2 and 200627/2015-5 to WJEMC); and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, grant 99999.003613/2015-01 to PHNB).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Submission declaration and verification

We declare that the manuscript in not under consideration for publication elsewhere and that it was approved by both authors that completely agree with its content. Also, if the manuscript is accepted it will not be published elsewhere in the same form or in another language.

Supplementary material

13127_2019_396_MOESM1_ESM.xlsx (12 kb)
Online Resource 1 Representativeness of Procatopodidae genera included in the present study. The symbol (T) refers to genus type species. (XLSX 12 kb)
13127_2019_396_MOESM2_ESM.xlsx (18 kb)
Online Resource 2 Included specimens, GenBank accession numbers and localities (XLSX 17 kb)
13127_2019_396_MOESM3_ESM.pdf (2.3 mb)
Online Resource 3 ML performed in Garli 2.0 and BI analysis performed in MrBayes v3.2.5 including both nuclear and mitochondrial partitions. (PDF 2346 kb)
13127_2019_396_MOESM4_ESM.pdf (2.5 mb)
Online Resource 4 Time analysis performed in BEAST v.1.8 including both nuclear and mitochondrial partitions. (PDF 2514 kb)
13127_2019_396_MOESM5_ESM.pdf (1.1 mb)
Online Resource 5 Posterior probability support values of the time analysis performed in BEAST v.1.8 including only nuclear partitions. (PDF 1155 kb)


  1. Ahl, E. (1924). Neue afrikanische Zahnkarpfen aus dem zoologischen Museum Berlin. Zoologischer Anzeiger, 61, 135–145.Google Scholar
  2. Ahl, E. (1927). Neue afrikanische Fische de Familien Anabantidae und Cyprinodontidae. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin, 76–81.Google Scholar
  3. Ahl, E. (1928). Beiträge zur Systematik der africanischen Zahnkarpfen. Zoologischer Anzeiger, 79, 115–116.Google Scholar
  4. Albert, J. S., & Carvalho, T. P. (2011). Neogene assembly of modern faunas. In J. S. Albert & R. E. Reis (Eds.), Historical Biogeography of Neotropical Freshwater Fishes (pp. 119–136). Berkley and Los Angeles: The Regents of the Univeristy of California.CrossRefGoogle Scholar
  5. Alter, S. E., Brown, B., & Stiassny, M. L. J. (2015). Molecular phylogenetics reveals convergent evolution in lower Congo River spiny eels. BMC Evolutionary Bioloy, 15, 224. Scholar
  6. Banister, K. E., & Clarke, M. A. (1980). A revision of the large Barbus (Pisces, Cyprinidae) of Lake Malawi with a reconstructionof the history of the southern African Rift Valley lakes. Journal of Natural History, 14(4), 483–542.CrossRefGoogle Scholar
  7. Beadle, L. C. (1981). The inland waters of tropical Africa. London: Longman.Google Scholar
  8. Bobe, R. (2006). The evolution of arid ecosystems in eastern Africa. Journal of Arid Environments, 66, 564–584.CrossRefGoogle Scholar
  9. Bonne, K. P. M. (2014). Reconstruction of the evolution of the Niger River and implications for sediment supply to the Equatorial Atlantic margin of Africa during the Cretaceous and the Cenozoic. Sediment provenance studies in hydrocarbon exploration and production. Geological Society of London, Special Publication, 386, 327–349.CrossRefGoogle Scholar
  10. Bragança, P. H. N., & Costa, W. J. E. M. (2018). Time-calibrated molecular phylogeny reveals a Miocene–Pliocene diversification in the Amazon miniature killifish genus Fluviphylax (Cyprinodontiformes: Cyprinodontoidei). Organisms, Diversity and Evolution, 18, 345–353.CrossRefGoogle Scholar
  11. Bragança, P. H. N., Amorim, P. F., & Costa, W. J. E. M. (2018). Pantanodontidae (Teleostei, Cyprinodontiformes), the sister group to all other cyprinodontoid killifishes as inferred by molecular data. Zoosystematics and Evolution, 94, 137–145.CrossRefGoogle Scholar
  12. Brown, K. J., Rüber, L., Bills, R., & Day, J. J. (2010). Mastacembelid eels support Lake Tanganyika as an evolutionary hotspot of diversification. BMC Evolutionary Biology, 10, 188.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Boulenger, G. A. (1898). Report on the fishes recently obtained by Mr. J. E. S. Moore in Lake Tanganyika. Proceedings of the Zoological Society of London, 1898, 494–497.Google Scholar
  14. Boulenger, G. A., (1904). Descriptions of new West-African freshwater fishes. Annals and Magazine of Natural History (Series 7), 14(79), 16–20.Google Scholar
  15. Boulenger, G. A., (1904). On a new cyprinodontid fish from Egypt. Annals and Magazine of Natural History, (Series 7), 14(80), 135–136.Google Scholar
  16. Boulenger, G. A. (1906). Fourth contribution to the ichthyology of Lake Tanganyika. Report on the collection of fishes made by Dr. W. A. Cunnington during the Third Tanganyika Expedition, 1904-1905. Transactions of the Zoological Society of London, 17, 537–601.Google Scholar
  17. Brüning, C. (1929). Der grüne Leuchtaugenfisch und der afrikanische Glanzkärpfling. Wochenschrift für Aquarienund Terrarienkunde, 26(23), 356.Google Scholar
  18. Burke, K. (1996). The African plate. South African Journal of Geology, 99, 341–409.Google Scholar
  19. Capart, A. (1949). Sondages et carte bathymétrique du lac Tanganyika. Exploration hydrobiologique du Lac Tanganyika (Vol. II). Brussels: Institut Royal des Sciences Naturelles de Belgique.Google Scholar
  20. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., & Thompson, J. D. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research, 31, 3497–3500.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chorowitz, J. (2005). The east African rift system. Journal of African Earth Sciences, 43, 379–410.CrossRefGoogle Scholar
  22. Clausen, H. S. (1959). Description of two subgenera and six new species of Procatopus Boul., a little known West African genus of cyprinodont fishes. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening, 121, 261–291.Google Scholar
  23. Clausen, H. S. (1967). Tropical Old World cyprinodonts. Copenhagen: Akademisk Forlag.Google Scholar
  24. Cohen, A. S., Lezzar, K. E., Tiercelin, J. J., & Soreghan, M. (1997). New paleogeographic and lake−level reconstructions of Lake Tanganyika: implications for tectonic, climatic and biological evolution in a rift lake. Basin Research, 7, 107–132.CrossRefGoogle Scholar
  25. Conway, K. W., & Moritz, T. (2006). Barboides britzi, a new species of miniature cyprinid from Benin (Ostariophysi: Cyprinidae), with a neotype designation for B. gracilis. Ichthyological Exploration of Freshwaters., 17, 73–86.Google Scholar
  26. Collier, G. E., Murphy, W. J., & Espinoza, M. (2009). Phylogeography of the genus Epiplatys (Aplocheiloidea: Cyprinodontiformes). Molecular Phylogenetics and Evolution, 50, 190–196.CrossRefPubMedGoogle Scholar
  27. Costa, W. J. E. M. (1996). Relationships, monophyly and three new species of the neotropical miniature poeciliid genus Fluviphylax (Cyprinodontiformes: Cyprinodontoidei). Ichthyological Exploration of Freshwaters, 7, 111–130.Google Scholar
  28. Costa, W. J. E. M. (1998). Phylogeny and classification of the Cyprinodontiformes (Euteleostei: Atherinomorpha): a reppraisal. In L. R. Malabarba, R. E. Reis, R. P. Vari, Z. M. S. Lucena, & C. A. S. Lucena (Eds.), Phylogeny and classification of Neotropical fishes (pp. 537–560). Edipucrs: Porto Alegre.Google Scholar
  29. Costa, W. J. E. M. (2012). Oligocene killifishes (Teleostei: Cyprinodontiformes) from southern France: relationships, taxonomic position, and evidence of internal fertilization. Vertebrate Zoology, 62, 371–386.Google Scholar
  30. Costa, W. J. E. M. (2018). Comparative morphology, phylogeny and classification of African seasonal killifishes of the tribe Nothobranchiini (Cyprinodontiformes: Aplocheilidae). Zoological Journal of the Linnean Society, 20, 1–21.Google Scholar
  31. Costa, W. J. E. M., Amorim, P. F., & Mattos, J. L. O. (2017). Molecular phylogeny and timing of diversification in South American Cynolebiini seasonal killifishes. Molecular Phylogenetics and Evolution, 116, 61–68.CrossRefPubMedGoogle Scholar
  32. Danley, P. D., Husemann, M., Ding, B., DiPietro, L. M., Beverley, E. J., & Peppe, D. J. (2012). The impact of the geological and paleoclimate on the diversification of East African cichlids. International Journal of Evolutionary Biology, 2012, 574851.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Day, J. J., & Wilkinson, M. (2006). On the origin of the Synodontis catfish species flock from Lake Tanganyika. Biology Letters, 2, 548–552.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Day, J. J., Peart, C. R., Brown, K. J., Friel, J. P., Bills, R., & Moritz, T. (2013). Continental diversification of an African catfish radiation (Mochokidae: Synodontis). Systematic Biology, 62, 351–365.CrossRefPubMedGoogle Scholar
  36. Day, J. J., Fages, A., Brown, K. J., Vreven, E. J., Stiassny, M. L. J., Bills, R., Friel, J. P., & Rüber, L. (2017). Multiple independent colonizations into the Congo Basin during the continental radiation of African Mastacembelus spiny eels. Journal of Biogeography, 44, 2308–2318.CrossRefGoogle Scholar
  37. Decru, E., Vreven, E., & Snoeks, J. (2017). The occurence of an Eastern African haplochromine cichlid in the Ituri River (Aruwimi, Congo basin): adaptive divergence in an introduced species? Hydrobiologia, 791, 209–220.CrossRefGoogle Scholar
  38. deMenocal, P. B. (1995). Plio−Pleistocene African climate. Science, 270, 53–59.CrossRefPubMedGoogle Scholar
  39. deMenocal, P. B. (2004). African climate change and faunal evolution during the Pliocene−Pleistocene. Earth and Planetary Science Letters, 220, 3–24.CrossRefGoogle Scholar
  40. Dorn, A., Musilová, Z., Platzer, M., Reichwald, K., & Cellerino, A. (2014). The strange case of East African annual fishes: aridification correlates with diversification for a savannah aquatic group? BMC Evolutionary Biology, 14, 210.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Duméril, A. H. A. (1861). Poissons de la côte occidentale d'Afrique. Archives du Muséum d'Histoire Naturelle, 10, 241–268.Google Scholar
  43. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.CrossRefPubMedGoogle Scholar
  44. Fitton, J. G. (1987). The Cameroon line, West Africa: a comparison between oceanic and continental alkaline volcanism. Geological Society of London, Special Publication, 30, 273–291.CrossRefGoogle Scholar
  45. Fjeldså, J., & Bowie, R. C. K. (2008). New perspectives on the origin and diversification of Africa’s forest avifauna. African Journal of Ecology, 46, 235–247.CrossRefGoogle Scholar
  46. Fjeldså, J., & Lovett, J. C. (1997). Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. Biodiversity and Conservation, 6, 325–346.CrossRefGoogle Scholar
  47. Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.PubMedGoogle Scholar
  48. Forest, F. (2009). Calibrating the tree of life: fossils, molecules and evolutionary timescales. Annals of Botany, 104, 789–794.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Freyhof, J., Kärst, H., & Geiger, M. (2014). Valencia robertae, a new killifish from southern Greece (Cyprinodontiformes: Valenciidae). Ichthyological Exploration of Freshwaters, 24, 289–298.Google Scholar
  50. Gaudant, J. (2009a). Note complementaire sur l’ichthyofaune oligocène de Seifhennersdorf (Saxe, Allemagne) et de Varnsdorf, Kundratice, Lbı’n, Skalice, Knı’zˇecı´, etc.(Bohême, Re’publique tchèque). Annalen des Naturhistorischen Museums in Wien Serie A, Mineralogie, Petrologie, Geologie, Paläontologie, Archäozoologie, Anthropologie, und Prähistorie, 111A, 281–312.Google Scholar
  51. Gaudant, J. (2009b). Occurence of the genus Aphanius Nardo (Cyprinodontid fishes) in the lower Miocene of the Cheb Basin (Czech Republic) with additional notes on Prolebias egeranus Laube. Journal of The National Museum (Prague). Natural History Series, 177(8), 83–90.Google Scholar
  52. Gernhard, T. (2008). The conditioned reconstruction process. Journal of Theoretical Biology, 253, 769–778.CrossRefPubMedGoogle Scholar
  53. Ghedotti, M. J. (2000). Phylogenetic analysis and taxonomy of the poecilioid fishes (Teleostei: Cyprinodontiformes). Zoological Journal of the Linnean Society, 130, 1–53.CrossRefGoogle Scholar
  54. Gill, T. N. (1862). On the West African genus Hemichromis and descriptions of new species in the museums of the Academy and Smithsonian Institution. Proceedings of the Academy of Natural Sciences of Philadelphia, 14, 134–139.Google Scholar
  55. Giraud, R., Bosworth, W., Thierry, J., & Delplanque, A. (2005). Phanerozoic geological evolution of Northern African and Central Africa: an overview. Journal of African Earth Sciences, 43, 83–143.CrossRefGoogle Scholar
  56. Giresse, P. (2005). Mesozoic−Cenozoic history of the Congo Basin. Journal of African Earth Sciences, 43, 301–315.CrossRefGoogle Scholar
  57. Goodier, S. A. M., Cotterill, F. P. D., O'Ryan, C., Skelton, P. H., & de Wit, M. J. (2011). Cryptic diversity of African Tigerfish (genus Hydrocynus) reveals palaeogeographic signatures of linked neogene tectonic events. PLoS One, 6, e28775.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Greenwood, P. H. (1987). The genera of pelmatochromine fishes (Teleostei, Cichlidae). A phylogenetic review. Bulletin of the British Museum (Natural History) Zoology, 53(3), 139–203.Google Scholar
  59. Helmstetter, A. J., Papadopulos, A. S. T., Igea, J., Van Dooren, T. J. M., Leroi, A. M., & Savolainen, V. (2016). Viviparity stimulates diversification in an order of fish. Nature Communications, 7, 11271.
  60. Hrbek, T., & Meyer, A. (2003). Closing the Tethys Sea and the phylogeny of Eurasian killfishes (Cyprinodontiformes: Cyprinodontidae). Journal of Evolutionary Biology, 16, 17–36.CrossRefPubMedGoogle Scholar
  61. Hrbek, T., Seckinger, J., & Meyer, A. (2007). A phylogenetic and biogeographic perspective on the evolution of poeciliid fishes. Molecular Phylogenetics and Evolution, 43, 986–998.CrossRefPubMedGoogle Scholar
  62. Huber, J. H. (1982). A review of the cyprinodont fauna of the coastal plain in Rio Muni, Gabon, Congo, Cabinda, and Zaire, with taxonomic shifts in Aphyosemion, Epiplatys and West African Procatopodins. London: British Killifish Association.Google Scholar
  63. Huber, J. H. (1999). Updates to the phylogeny and systematics of the African lampeye schooling cyprinodonts (Cyprinodontiformes: Aplocheilichthyinae). Cybium, 23, 53–77.Google Scholar
  64. Huber, J. H. (2007). Procatopus websteri: a new species of lampeye killifish from Akaka camp, western Gabon (Teleostei: Poeciliidae: Aplocheilichthyinae), exhibiting similarities of pattern and morphology with another sympatric lampeye species, Aplocheilichthys spilauchen. Tropical Fish Hobbyist Magazine, 55, 110–114.Google Scholar
  65. Huber, J. H. (2011). Description of Aapticheilichthys, nov. gen., a new monotypic fish genus of lampeyes (Cyprinodontiformes: Poeciliidae) from western Africa. Killi-Data Series, 2011, 4–9.Google Scholar
  66. Klausewitz, W. (1957). Barbus schneemanni und Aplocheilichthys maculatus, zwei neue Fische aus Ost-Afrika (Pisces, Cyprinidae und Cyprinodontidae). Senckenbergiana Biologica, 38, 279–282.Google Scholar
  67. Kolbmüller, S., Strurmbauer, C., Verheyen, E., Meyer, A., & Salzburger, A. (2006). Mitochondrial phylogeny and phylogeography of East African squeaker catfish (Siluriformes: Synodontis). BMC Evolutionary Biology, 6, 49.CrossRefGoogle Scholar
  68. Koubínová, D., Irwin, N., Hulva, P., Koubek, P., & Zima, J. (2013). Hidden diversity in Senegalese bats and associated findings in the systematics of the family Vespertilionidae. Frontiers in Zoology, 10, 48.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lévêque, C. (1997). Biodiversity dynamics and conservation: the freshwater fish of tropical Africa. Cambridge: Cambridge University Press.Google Scholar
  70. Lévêque, C. (2006). Biogéographie. In C. Lévêque & D. Paugy (Eds.), Les poissons des eaux continentales africaines: Diversité, écologie, utilisation par l'homme (pp. 75–88). Paris: IRD Editions.Google Scholar
  71. Lévêque, C., Paugy, D., & Teugels, G. G. (1991). Annotated check−list of the freshwater fishes of the Nilo−sudan river basins. Revue d'Hydrobiologie tropicale, 24, 131–154.Google Scholar
  72. Li, C., Ortí, G., Zhang, G., & Lu, G. (2007). A practical approach to phylogenomics: the phylogeny of ray−finned fish (Actinopterygii) as a case study. BMC Evolutionary Biology, 7, 44.CrossRefPubMedPubMedCentralGoogle Scholar
  73. López, J. A., Chen, W. J., & Ortí, G. (2004). Esociform phylogeny. Copeia, 3, 449–564.CrossRefGoogle Scholar
  74. Lorenzen, E. D., Heller, R., & Siegismund, H. R. (2012). Comparative phylogeography of African savannah ungulates. Molecular Ecology, 21, 3656–3670.CrossRefPubMedGoogle Scholar
  75. Lovett, J. C. (1993). Eastern Arc moist forest flora. In J. C. Lovett & S. K. Wasser (Eds.), Biography and ecology of the rain forests of eastern Africa (pp. 33–35). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  76. Lundberg, J. G., Marshall, L. G., Guerrero, J., Horton, B., Malabarba, M. C. S. L., & Wesselingh, F. (1998). The stage for Neotropical fish diversification: a history of tropical South American rivers. In L. R. Malabarba, R. E. Reis, R. P. Vari, Z. M. S. Lucena, & C. A. S. Lucena (Eds.), Phylogeny and Classification of Neotropical fishes (pp. 13–48). Porto Alegre: Edipucrs.Google Scholar
  77. Macgregor, D. (2015). History of the development of the East African Rift System: A series of interpreted maps trough time. Journal of African Earth Sciences, 101, 232–252.CrossRefGoogle Scholar
  78. Maley, J. (1996). The African rainforest: main characteristics of changes in vegetation and climate from the Upper−Cretaceous to the Quaternary. Proceedings of the Royal Society of Edimburgh Section B, 104, 31–73.CrossRefGoogle Scholar
  79. Malier, M. (1958). Recherches hydrobiologiques au lac Tumba (Congo Belge, Province de l’Equateur). Hydrobiologia, 10, 352–385.CrossRefGoogle Scholar
  80. Mayden, R. L. (1988). Vicariance biogeography, parsimony, and evolution in North American freshwater fishes. Systematic Zoology Journal, 37, 329–355.CrossRefGoogle Scholar
  81. Meinken, H. (1932). Über einige neue Zahnkarpfen aus dem tropischen Westafrika. Blätter für Aquarien- und Meinken, H. (1932). Über einige neue Zahnkarpfen aus dem tropischen Westafrika. Blätter für Aquarien- und Terrarienkunde, 43(4), 53–58.Google Scholar
  82. Myers, G. S. (1924). New genera of African poeciliid fishes. Copeia, 129, 42–43.Google Scholar
  83. Myers, G. S. (1928). Two new genera of fishes. Copeia, 166, 7–8.Google Scholar
  84. Myers, G. S. (1931). The primary groups of oviparous cyprinodont fishes, order Cyprinodontes (Microcyprini). Stanford University Publications, 6, 1–14.Google Scholar
  85. Myers, G. S. (1938). Studies on the genera of cyprinodont fishes. XIV. Aplocheilichthys and its relatives in Africa. Copeia, 1938, 136–143.CrossRefGoogle Scholar
  86. Myers, G. S. (1955). Notes on the classification and names of cyprinodont fishes. Tropical Fish Hobbyist Magazine, 4, 7.Google Scholar
  87. Nardo, G. D. (1827). Prodromus observationum et disquisitionum Adriaticae ichthyologiae. Giornale di fisica, chimica e storia naturale, medicina, ed arti. (series 2), 10, 22–40.Google Scholar
  88. Nesi, N., Kadjo, B., Pourrut, X., Leroy, E., Shongo, C. P., Cruaud, C., & Hassanin, A. (2013). Molecular systematics and phylogeography of the tribe Myonycterini (Mammalia, Pteropodidae) infered from mitochondrial and nuclear markers. Molecular Phylogenetics and Evolution, 66, 126–137.CrossRefPubMedGoogle Scholar
  89. Nichols, J. T., & Griscom, L. (1917). Fresh-water fishes of the Congo basin obtained by the American Museum Congo expedition, 1909-1915. Bulletin of the American Museum of Natural History, 37, 653–756.Google Scholar
  90. Nicolas, V., Missoup, A.–. D., Colyn, M., Cruaud, C., & Denys, C. (2012). West−Central African Pleistocene lowland forest evolution revealed by the Phylogeography of Missone’s soft−furred mouse. African Zoology, 47, 100–112.Google Scholar
  91. Obaje, N. G. (2009). Geology and mineral resources of Nigeria. Berlin: Springer.CrossRefGoogle Scholar
  92. Obrhelová, N. (1985). Osteologie a ekologie dvou druhu rodu Prolebias Sauvage (Pisces, Cyprinodontidae) v Zapadoceskem spodnim miocenu. Sborník Národního Muzea v Praze, 41B, 85–140.Google Scholar
  93. Otero, O. (2010). What controls the freshwater fish fossil record? A focus on the late cretaceous and tertiary of Afro−Arabia. Cybium, 34, 93–113.Google Scholar
  94. Pappenheim, P., & Boulenger, G. A. (1914). Fische. - Wissenschaftliche Ergebnisse der deutschen Zentral-Afrika Expedition, 1907-1908, 5, 225–260.Google Scholar
  95. Parenti, L. R. (1981). A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei, Atherinomorpha). Bulletin of the American Musesum of Natural History, 168, 335–357.Google Scholar
  96. Parham, J. F., Donoghue, P. C., Bell, C. J., Galway, T. D., Head, J. J., Holroyd, P. A., et al. (2012). Best practices for justifying fossil calibrations. Systematic Biology, 62, 346–359.CrossRefGoogle Scholar
  97. Peart, C. R., Bills, R., Wilkinson, M., & Day, J. J. (2014). Nocturnal claroteine catfishes reveal dual colonisation but a single radiation in Lake Tanganyika. Molecular Phylogenetics and Evolution, 73, 119–128.CrossRefPubMedGoogle Scholar
  98. Pellegrin, J. (1904). Contribution à l'étude anatomique, biologique et taxinomique des poissons de la famille des Cichlidés. Mémoires de la Société Zoologique de France, 16, 41–400.Google Scholar
  99. Pinton, A., Agnese, J.–. F., Paugy, D., & Otero, O. (2013). A large−scale phylogeny of Synodontis (Mochokidae, Siluriformes) reveals the influence of geological events on continental diversity during the Cenozoic. Molecular Phylogenetics and Evolution, 66, 1027–1040.CrossRefPubMedGoogle Scholar
  100. Plana, V. (2004). Mechanisms and tempo of evolution in the African Guineo−Congolian rainforest. Philosophical Transactions of the Royal Society London B Biological Sciences, 359, 1585–1594.CrossRefGoogle Scholar
  101. Pohl, M., Milvertz, F. C., Meyer, A., & Vences, M. (2015). Multigene phylogeny of cyprinodontiform fishes suggests continental radiations and a rogue taxon position of Pantanodon. Vertebrate Zoology, 65, 37–44.Google Scholar
  102. Poll, M. (1938). Poissons du Katanga (bassin du Congo) récoltés par le professeur Paul Brien. Revue de Zoologie et de Botanique Africaines, 30(4), 389–423.Google Scholar
  103. Poll, M. (1952a). Notes sur les Cyprinodontidae du Musée du Congo belge. deuxiéme partie: les Aplocheilichthyini et les Lamprichthyini. Revue de Zoologie et de Botanique Africaine, 45, 292–305.Google Scholar
  104. Poll, M. (1952b). Notes sur les Cyprinodontidae de Léopoldville avec description d'une espèce nouvelle du genre Epiplatys. Revue de Zoologie et de Botanique Africaines, 46, 295–300.Google Scholar
  105. Poll, M. (1971). Un genre nouveau et une espece nouvelle de Cyprinodontidae congolaise. Revue de Zoologie et de Botanique Africaine, 83, 303–308.Google Scholar
  106. Poll, M., & Lambert, J. G. (1965). Contribution a L’etude systematic et zoogeographique des Procatopodinae de L’Afrique central (Pisces, Cyprinodontidae). Bulletin des Séances. Académie Royale des Sciences d'Outre-Mer, 2, 615–631.Google Scholar
  107. Pollux, B. J. A., Meredith, R. W., Springer, M. S., Garland, T., & Reznick, D. N. (2014). The evolution of the placenta drives a shift in sexual selection in livebearing fish. Nature, 513, 233–236.CrossRefPubMedGoogle Scholar
  108. Reichenbacher, B., & Kowalke, T. (2009). Neogene and present-day zoogeography of killifishes (Aphanius and Aphanolebias) in the Mediterranean and Paratethys areas. Palaeogeography Palaeoclimatology Palaeoecology, 281, 43–56.CrossRefGoogle Scholar
  109. Reznick, D. N., Furness, A. I., Meredith, R. W., & Springer, M. S. (2017). The origin and biogeographic diversification of fishes in the family Poeciliidae. PLoS One, 12, e0172546. Scholar
  110. Ring, U. (2008). The extreme uplift of the Rwenzori Mountains in the East African Rift, Uganda: structural framework and possible role of glaciations. Tectonics, 27, TC4018.
  111. Roberts, T. R. (1970). Description, osteology, and relationships of the Amazonian cyprinodont fish Fluviphylax pygmaeus. Breviora, 347, 1–28.Google Scholar
  112. Roberts, T. R. (1972). Ecology of the fishes in the Amazon and Congo basins. Bulletin of the Museum of Comparative Zoology, 143, 117–147.Google Scholar
  113. Roberts, T. R. (1975). Geographical distribution of African freshwater fishes. Zoological Journal of the Linnean Society, 57, 249–319.CrossRefGoogle Scholar
  114. Roman, B. (1970). Nuevas especies de peces de Río Muni (Guinea Ecuatorial). Publicaciones del Instituto de Biología Aplicada Barcelona, 49, 5–23.Google Scholar
  115. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Hohna, S., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Runge, J. (2001). Landschafsgenese und Palaoklima in Zentralafrika. Relief, Boden, Palaoklima, 17, 1–294.Google Scholar
  117. Runge, J. (2007). The Congo River, Central Africa. In A. Gupta (Ed.), Geomorphology and Management (pp. 293–309). Chichester: John Wiley and Sons Ltd..Google Scholar
  118. Salzburger, W., Bocxlaer, B. V., & Cohen, A. S. (2014). Ecology and evolution of the African Great Lakes and their faunas. Annual Review of Ecology, Evolution, and Systematics, 45, 519–545.CrossRefGoogle Scholar
  119. Sauvage, H. E. (1874). Notice sur les poissons tertiares del’ Auvergne. Bulletin de la Société d’Histoire Naturelle de Toulouse, 8, 171–198.Google Scholar
  120. Seegers, L. (1984). Zwei Formen der Gattung Aplocheilichthys Bleeker, 1863 aus dem Küstentiefland von Tanzania, mit der Wiederbeschreibung von & Aplocheilichthys kongoranensis (Ahl, 1924) (Pisces: Cyprinodontidae: Procatopodinae). Ichthyologische Ergebnisse aus Tanzania, V. Revue de Zoologie Africaine, 98(1), 74–96.Google Scholar
  121. Schliewen, U. K., & Stiassny, M. L. J. (2006). A new species of Nanochromis (Teleostei: Cichlidae) from Lake Mai Ndombe, central Congo Basin, Democratic Republic of Congo. Zootaxa, 1169, 33–46.CrossRefGoogle Scholar
  122. Scholz, C. A., & Rosendahl, B. R. (1988). Low lake stands in lakes Malawi and Tanganyika, East Africa, delineated with multifold seismic data. Science, 240, 1645–1648.CrossRefPubMedGoogle Scholar
  123. Schultheiẞ, R., Van Bocxlaer, B., Riedel, F., von Rintelen, T., & Albrecht, C. (2014). Disjunct distributions of freshwater snails testify a central role of the Congo system in shaping biogeographical patterns in Africa. BMC Evolutionary Biology, 14, 42.CrossRefGoogle Scholar
  124. Schwarzer, J., Misof, B., Ifuta, S. N., & Schliewen, U. K. (2011). Time and origin of cichlid colonization of the lower Congo rapids. PLoS One, 6, e22380.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Schwarzer, J., Swartz, E. R., Vreven, E., Snoeks, J., Cotterill, F. P. D., Misof, B., & Schiewen, U. K. (2012). Repeated trans−watershed hybridization among haplochromine cichlids (Cichlidae) was triggered by Neogene landscape evolution. Proceedings of the Royal Society of London B: Biological Sciences, 279, 4389–4398.CrossRefGoogle Scholar
  126. Schwarzer, J., Lamboj, A., Langen, K., Misof, B., & Schliewen, U. K. (2014). Phylogeny and age of chromidotilapiine cichlids (Teleostei: Cichlidae). Hydrobiologia, 748, 185–199. Scholar
  127. Sépulchre, P., Ramstein, G., Fluteau, F., Schuster, M., Tiercelin, J. J., & Brunet, M. (2006). Tectonic uplift and Eastern Africa Aridification. Science, 313, 1419–1423.CrossRefPubMedGoogle Scholar
  128. Shirley, M. H., Vliet, K. A., Carr, A. N., & Austin, J. D. (2013). Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservations. Proceedings of the Royal Society of London B: Biological Sciences, 281, 2013–2483.Google Scholar
  129. Skelton, P. H., & Swartz, E. R. (2011). Walking the tightrope: trends in African freshwaters systematics ichthyology. Journal of Fish Biology, 79, 1413–1435.CrossRefPubMedGoogle Scholar
  130. Smith, G. R. (1981). Late Cenozoic freshwater fishes of North America. Annual Review of Ecology and Systematics, 12, 163–193.CrossRefGoogle Scholar
  131. Sommerfeld, A., Prömmel, K., & Cubasch, U. (2016). The East African Rift System and the impact of orographic changes on regional climate and the resulting aridification. International Journal of Earth Sciences, 105, 1779–1794.CrossRefGoogle Scholar
  132. Stankiewicz, J., & de Wit, M. J. (2006). A proposed drainage evolution model for Central Africa−did the Congo flow east? Journal of African Earth Sciences, 44, 75–84.CrossRefGoogle Scholar
  133. Stanley, W. T., Rogers, M. A., & Hutterer, R. (2005). A new species of Congosorex from the Eastern Arc Mountains, Tanzania, with significant biogeographical implications. Journal of Zoology, 265, 269–280.CrossRefGoogle Scholar
  134. Steindachner, F. (1881). Ichthyologische Beiträge X. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe, 83(1), 179–219.Google Scholar
  135. Stiassny, M. L. J., & Schliewen, U. K. (2007). Congochromis, a new cichlid genus (Teleostei: Cichlidae) from central Africa, with the description of a new species from the upper Congo River, Democratic Republic of Congo. American Museum Novitates, 3576, 1–14.CrossRefGoogle Scholar
  136. Swartz, E. R., Skelton, P. H., & Bloomer, P. (2007). Sea−level changes, river capture and the evolution of populations of the Eastern Cape and firey redfins (Pseudobarbus afer and Pseudobarbus phlegethon, Cyprinidae) across multiple river systems in South Africa. Journal of Biogeography, 34, 2086–2099.CrossRefGoogle Scholar
  137. Swartz, E. R., Mwale, M., & Hanner, R. (2008). A role for barcoding in the study of Africa fish diversity and conservation. South African Journal of Science, 104, 293–298.Google Scholar
  138. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  139. Trape, S. (2013). A study of the relict fish fauna of northern Chad, with the first records of a polypterid and a poeciliid in the Sahara desert. Comptes Rendus Biologies, 336, 582–587.CrossRefPubMedGoogle Scholar
  140. Ubangoh, R. U., Pacca, I. G., & Nyobe, J. B. (1998). Palaeomagmatism of the continental sector of the Cameroon Volcanic Line, West Africa. Geophysical Journal International, 135, 362–374.CrossRefGoogle Scholar
  141. Van Damme, D., & Pickford, M. (1995). The late Cenozoic Ampullariidae (Mollusca, Gastropoda) of the Albertine Rift Valley (Uganda−Zaire). Hydrobiologia, 316, 1–32.CrossRefGoogle Scholar
  142. Van Damme, D., & Pickford, M. (1999). The late Cenozoic Viviparidae (Mollusca, Gastropoda) of the Albertine Rift Valley (Uganda−Zaire). Hydrobiologia, 390, 171–217.CrossRefGoogle Scholar
  143. Van der Zee, J. R., Sonnnenberg, R., & Munene, J. J. M. M. (2015). Hypsopanchax stiassnyae, a new poeciliid fish from the Lulua River (Democratic Republic of Congo) (Teleostei: Cyprinodontiformes). Ichthyological Exploration of Freshwaters, 26, 87–96.Google Scholar
  144. Veatch, A. C. (1935). Evolution of the Congo Basin. Memoirs of the Geological Society of America, 3, 1–183.CrossRefGoogle Scholar
  145. Weiss, J. D., Cotteril, F. P. D., & Schliewen, U. K. (2015). Lake Tanganyika−A ‘Melting Pot’ of ancient and young cichlid lineages (Teleostei: Cichlidae)? PLoS One, 10, e0125043.CrossRefPubMedPubMedCentralGoogle Scholar
  146. Whitley, G. P. (1965). Some fish genera scrutinized. Proceedings of the Royal Zoological Society of New South Wales, 85, 25–26.Google Scholar
  147. Wiese, B. (1980). Zaire-Landesnatur, Bevolkerung, Wirtschaft. Wiss Landerk, 15, 1–360.Google Scholar
  148. Wildekamp, R. H. (1977). Beschreibung von zwei neuen Leuchtaugenfischen aus Tansania (Cyprinodontidae. Procatopodinae. Aplocheilichthys). Aquarienfreund, 6(6), 103–116.Google Scholar
  149. Wildekamp, R. H. (1995). A world of killies, atlas of the oviparous cyprinodontiform fishes of the world (Vol. 2). Mishawaka: American Killifish Association.Google Scholar
  150. Wildekamp, R. H. (2004). A world of killies. Atlas of the oviparous cyprinodontiform fishes of the world (Vol. 4). Mishawaka: American Killifish Association.Google Scholar
  151. Wildekamp, R. H., & Malumbres, F. J. (2004). Identification of Micropanchax scheeli (Cyprinodontiformes: Poeciliidae: Aplocheilichthyinae) with the description of a new species of the genus Poropanchax. Cybium, 28(1), 61–67.Google Scholar
  152. Wildekamp, R. H., Romand, R., & Scheel, J. J. (1986). Cyprinodontidae. In J. Daget, J.–. P. Gosse, & T. van den Audenaerde (Eds.), Check−list of the freshwater fishes of Africa 2 (CLOFFA 2) (pp. 165–276). Brussels, Tervuren, Paris: ISNB, MRAC, ORSTOM.Google Scholar
  153. Williams, C. J. R., & Kniveton, D. R. (2011). African climate and climate change: physical, social and political perspectives. London: Springer.CrossRefGoogle Scholar
  154. Wilson, A. B., Teugels, G. G., & Meyer, A. (2008). Marine incursion: the freshwater herring of Lake Tanganyika are the product of a marine invasion into West Africa. PLoS One, 3, e1979.CrossRefPubMedPubMedCentralGoogle Scholar
  155. Xia, X. H. (2013). Dambe5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 30, 1720–1728.CrossRefPubMedPubMedCentralGoogle Scholar
  156. Xia, X. H., Xie, Z., Salemi, M., Chen, L., & Wang, Y. (2003). An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 26, 1–7.CrossRefPubMedGoogle Scholar
  157. Yamanoue, Y., Mika, M., Doi, H., Mabuchi, K., Sakai, H., & Nishida, M. (2011). Multiple invasions into freshwater by pufferfishes (teleostei: tetraodontidae): a mitogenomic perspective. PLoS One, 6, e17410.CrossRefPubMedPubMedCentralGoogle Scholar
  158. Zimkus, B. M. (2009). Biogeographical analysis of Cameroonian puddle frogs and description of a new species Phrynobatrachus (Anura: Phrynobatrachidae) endemic to Mount Oku, Cameroon. Zoological Journal of the Linnean Society, 157, 795–813.CrossRefGoogle Scholar
  159. Zwickl, D.J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2019

Authors and Affiliations

  1. 1.Laboratory of Systematics and Evolution of Teleost Fishes, Institute of BiologyFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Royal Museum for Central AfricaTervurenBelgium

Personalised recommendations