Advertisement

Organisms Diversity & Evolution

, Volume 18, Issue 3, pp 345–353 | Cite as

Time-calibrated molecular phylogeny reveals a Miocene–Pliocene diversification in the Amazon miniature killifish genus Fluviphylax (Cyprinodontiformes: Cyprinodontoidei)

  • Pedro H. N. Bragança
  • Wilson J. E. M. Costa
Original Article

Abstract

Species of Fluviphylax are widely distributed over the Amazon and Orinoco river drainages and are among the smallest fish in the neotropics, inhabiting areas near the margin of slow-flowing clear and black water streams and lakes. Here, we present the first multigene molecular phylogeny of Fluviphylax, including all five nominal species of Fluviphylax and three undescribed species. The analysis included fragments of one mitochondrial and five nuclear genes, totaling 5880 bp. The dataset was analyzed using maximum parsimony, maximum likelihood, and Bayesian inference approaches providing high-supported well-solved trees. A time-calibrated analysis was performed providing information on the origin and diversification of the miniature genus in the Amazon. We estimate that Fluviphylax lineage splits from its sister group, the Anablepidae and Poeciliidae (Poeciliinae sensu Parenti, 1981), during the Late Eocene, about 36.6 Mya; but lineage diversification started only in the Middle Miocene, about 16 Mya, during the formation of the Pebas system. Subsequent splits within Fluviphylax occurred in the Late Miocene–Pliocene, between 10 and 6 Mya and during the Pliocene, and were probably influenced by paleogeographical events such as the breaching of the Purus arch, the rise of the Vaupés arch, the uplift of the Fitzcarrald arch, and the capture of the Contigo and Uraricoera river drainages by the Branco River. The present time-calibrated analysis provides the first insight on the evolution of one of the smallest vertebrate taxa in the Amazon and Orinoco river drainages.

Keywords

Neotropical Neogene Paleodrainage Pebas system Amazon lampeye Andean uplift 

Notes

Acknowledgments

We are grateful to P. F. Amorim, E. Henschel, and F.P. Ottoni for the valuable help in several collecting expeditions, and to C. Gama and H. Lazzaroto for collecting additional material. We are also grateful to H. A. Britski, M. de Pinna, N. A. Menezes, O. Oyakawa, P. Pruvost, S. O. Kullander J. Snoeks, E. Vreven, and Z. Gabsi for the loan of material or/and hospitality during visits to their institutions; and to P. F. Amorim, A. Katz, and J.L.O. Mattos for their help with the image preparations and analyses.

Funding information

This study was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico – Ministério de Ciência e Tecnologia), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and PROTAX (Programa de Capacitação em Taxonomia). Collections were made with license number 32955–3, provided by ICMBio (Instituto Chico Mendes de Conservação da Biodiversidade).

Supplementary material

13127_2018_373_MOESM1_ESM.pdf (293 kb)
ESM 1 (PDF 292 kb)
13127_2018_373_MOESM2_ESM.xls (20 kb)
ESM 2 (XLS 20 kb)
13127_2018_373_MOESM3_ESM.xlsx (16 kb)
ESM 3 (XLSX 16 kb)
13127_2018_373_MOESM4_ESM.xlsx (10 kb)
ESM 4 (XLSX 9 kb)
13127_2018_373_MOESM5_ESM.pdf (159 kb)
ESM 5 (PDF 159 kb)
13127_2018_373_MOESM6_ESM.pdf (164 kb)
ESM 6 (PDF 164 kb)
13127_2018_373_MOESM7_ESM.pdf (479 kb)
ESM 7 (PDF 479 kb)
13127_2018_373_MOESM8_ESM.pdf (252 kb)
ESM 8 (PDF 251 kb)

References

  1. Arrington, D. A., & Winemiller, K. O. (2003). Diel changeover in sand-beach fish assemblages in a neotropical floodplain river. Journal of Fish Biology, 63, 442–459.CrossRefGoogle Scholar
  2. Arrington, D. A., & Winemiller, K. O. (2006). Habitat affinity, the seasonal flood pulse, and community assembly in littoral zone of a neotropical floodplain river. Journal of the North American Benthological Society, 25(1), 126–141.CrossRefGoogle Scholar
  3. Bloom, D. D. & Lovejoy, N. R. (2011). The biogeography of marine incursions in South America. In J. S. Albert & R. E. Reis (Eds.), Historical Biogeography of Neotropical Freshwater Fishes (pp. 137–144). The Regents of the University of California.Google Scholar
  4. Bragança, P. H. N., Amorim, P. F., & Costa, W. J. E. (2018). Pantanodontidae (Teleostei, Cyprinodontiformes), the sister group to all other cyprinodontoid killifishes as inferred by molecular data. Zoosystematics and Evolution, 94(1), 137–145.CrossRefGoogle Scholar
  5. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., & Thompson, J. D. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research., 31(13), 3497–3500.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Costa, W. J. E. M. (1996). Relationships, monophyly and three new species of the neotropical miniature poeciliid genus Fluviphylax (Cyprinodontiformes: Cyprinodontoidei). Ichthyological Exploration of Freshwaters, 7(2), 111–130.Google Scholar
  7. Costa, W. J. E. M., & Le Bail, P. Y. (1999). Fluviphylax palikur: a new Poeciliid from the Rio Oiapoque basin, Northern Brazil (Cyprinodontiformes: Cyprinodontoidei), with comments on miniaturization in Fluviphylax and other neotropical freshwater fishes. Copeia, 1999, 1027–1034.CrossRefGoogle Scholar
  8. Costa, W. J. E. M., Amorim, P. F., & Mattos, J. L. O. (2017). Molecular phylogeny and timing of diversification in South American Cynolebiini seasonal killifishes. Molecular Phylogenetics and Evolution, 116, 61–68.CrossRefPubMedGoogle Scholar
  9. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dias de Gamero, M. L. (1996). The changing course of the Orinoco River during the Neogene: a review. Palaeogeography, Palaeoclimatology, Palaeoecology, 123, 385–402.CrossRefGoogle Scholar
  11. Donoghue, P. C. J., & Benton, M. J. (2007). Rocks and clocks: calibrating the tree of life using fossils and molecules. Trends in Ecology and Evolution, 22(8), 424–431.CrossRefPubMedGoogle Scholar
  12. Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoSBiology., 4, 699–710.Google Scholar
  13. Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Espurt, N., Baby, P., Brusset, S., Roddaz, M., Hermoza, W., Regard, V., Antoine, P. -O., Salas-Gismondi, R., & Bolaños, R. (2007). How does the Nazca Ridge subduction influence the modern Amazonian foreland basin? Geology, 35, 515–518.Google Scholar
  15. Espurt, N., Baby, P., Brusset, S., Roddaz, M., Hermoza, W., & Barbarand, J. (2010). The Nazca Ridge and uplift of the Fitzcarrald arch: implications for regionalgeology in northern South America. In C. Hoorn, & F.P. Wesselingh (Eds.), Amazonia, Landscape and Species Evolution: A Look into the Past ( pp. 89–100). Blackwell: London.Google Scholar
  16. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783–791.CrossRefPubMedGoogle Scholar
  17. Ferreira, E. J. G., Zuanon, J., Forsberg, B., Goulding, M., & Briglia-Ferreira, R. (2007). Rio Branco: Peixes, ecologia e conseração de Roraima. Amazon Conservation Association/Instituto Nacional de Pesquisas da Amazônia/Sociedade Civil Mamirauá: Manaus.Google Scholar
  18. Figueiredo, J., Hoorn, C., van der Ven, P., & Soares, E. (2009). Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas basin. Geology, 37, 619–622.CrossRefGoogle Scholar
  19. Figueiredo, J., Hoorn, C., van der Ven, P., & Soares, E. (2010). Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas basin: Reply. Geology, 38, 213.CrossRefGoogle Scholar
  20. Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294–299.PubMedGoogle Scholar
  21. Gernhard, T. (2008). The conditioned reconstruction process. Journal of Theoretical Biology, 253(4), 769–778.CrossRefPubMedGoogle Scholar
  22. Ghedotti, M. J. (1998). Phylogeny and classification of the Anablepidae (Teleostei: Cyprinodontiformes). In L. R. Malabarba, R. E. Reis, R. P. Vari, Z. M. S. Lucena, & C. A. S. Lucena (Eds.), Phylogeny and Classification of Neotropical Fishes (pp. 561–582). Edipucrs: Porto Alegre.Google Scholar
  23. Ghedotti, M. J. (2000). Phylogenetic analysis and taxonomy of the poecilioid fishes (Teleostei: Cyprinodontiformes). Zoological Journal of the Linnean Society, 130, 1–53.CrossRefGoogle Scholar
  24. Goulding, M., Leal-Carvalho, M., & Ferreira, E. (1988). Rio Negro, rich life in poor water. Amazonian diversity and foodchain ecology as seen through fish communities. the Netherlands: SPB Academic Publishing.Google Scholar
  25. Helmstetter, A. J., Papadopulos, A. S. T., Igea, J., Van Dooren, T. J. M., Leroi, A. M., & Savolainen, V. (2016). Viviparity stimulates diversification in an order of fish. Nature Communications, 7, 11271.  https://doi.org/10.1038/ncomms11271.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ho, S. Y. W. (2014). The changing face of the molecular evolutionary clock. Trends in Ecology & Evolution, 29, 496–503.CrossRefGoogle Scholar
  27. Hoorn, C. (1993). Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study. Palaeogeography, Palaeoclimatology, Palaeoecology, 105, 267–309.CrossRefGoogle Scholar
  28. Hoorn, C. (1994). Fluvial palaeoenvironments in the intracratonic Amazonas Basin (Early Miocene-early Middle Miocene, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology, 109, 1–54.CrossRefGoogle Scholar
  29. Hoorn, C., Guerrero, J., Sarmiento, G. A., & Lorente, M. A. (1995). Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23, 237–240.CrossRefGoogle Scholar
  30. Hoorn, C., Wesselingh, F. P., Hovikoski, J., & Guerrero, J. (2010). The development of the Amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia). In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia, Landscape and Species Evolution: A Look into the Past (pp. 123–142). Blackwell: London.Google Scholar
  31. Hrbek, T., Seckinger, J., & Meyer, A. (2007). A phylogenetic and biogeographic perspective on the evolution of poeciliid fishes. Molecular Phylogenetics and Evolution, 43, 986–998.CrossRefPubMedGoogle Scholar
  32. Hubert, N., & Renno, J. F. (2006). Historical biogeography of South America freshwater fishes. Journal of Biogeography, 33, 1414–1436.CrossRefGoogle Scholar
  33. Jaramillo, C., Romero, I., D’Apolito, C., Bayona, G., Duarte, W., Louwye, S., Escobar, J., Luque, J., Carrillo-Briceño, J. D., Zapata, V., Mora, A., Schouten, S., Zavada, M., Harrington, G., Ortiz, J., & Wesselingh, F. P. (2017). Miocene flooding events of western Amazonia. Science Advances, 3(5), e1601693.  https://doi.org/10.1126/sciadv.1601693.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lasso, C., Mojica, J. I., Usma, J. S., Maldonado-Ocampo, J. A., Do Nascimiento, C., Taphorn, D. C., et al. (2004). Peces de la cuenca del rio Orinoco. Parte L Lista de especies y distribucion por subcuencas. Biota Colombiana, 5(2), 95–158.Google Scholar
  35. Li, C., Ortí, G., Zhang, G., & Lu, G. (2007). A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evolutionary Biology, 7, 44.CrossRefPubMedPubMedCentralGoogle Scholar
  36. López, J. A., Chen, W. J., & Ortí, G. (2004). Esociform phylogeny. Copeia, 3, 449–564.CrossRefGoogle Scholar
  37. Lovejoy, N. R., Albert, J. S., & Crampton, W. G. R. (2006). Miocene marine incursions and marine/freshwater transitions: evidence from Neotropical fishes. Journal of South American Earth Sciences, 21(1), 5–13.CrossRefGoogle Scholar
  38. Lucinda, P. H. F. (2003). Family Poeciliidae. In R. E. Reis, S. O. Kullander, & C. J. Ferraris Jr. (Eds.), Check List of the Freshwater Fishes of South and Central America (pp. 555–581). Edipucrs: Porto Alegre.Google Scholar
  39. Lujan, N. K. & Armbruster, J. W. (2011). The Guiana shield. In J. S. Albert, & R. E. Reis (Eds.), Historical Biogeography of Neotropical Freshwater Fishes (pp. 211–224). The Regents of the University of California.Google Scholar
  40. Lujan, N. K., Armbruster, J. W., Lovejoy, N. R., & Lopéz-Fernández, H. (2014). Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae. Molecular Phylogenetics and Evolution, 82, 269–288.CrossRefPubMedGoogle Scholar
  41. Lundberg, J. G., Marshall, L. G., Guerrero, J., Horton., Malabarba, M. C. S. L., & Wesselingh, F. (1998). The stage for neotropical fish diversification: a history of tropical South American rivers. In L. R. Malabarba., R. E. Reis., R P, Vari, Z. M, Lucena, & C. A. S, Lucena (Eds.), Phylogeny and Classification of Neotropical Fishes (pp. 13–48). Edipucrs: Porto Alegre.Google Scholar
  42. Lundberg, J. G., Sabaj Pérez, M. H., Dahdul, W. M., Orangel, A., & Aguilera, S. (2010). The Amazonian Neogene fish fauna. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia, Landscape and Species Evolution: A Look into the Past (pp. 281–301). Blackwell: London.Google Scholar
  43. Maldonado-Ocampo, J. A., Vari, R. P., & Usma, J. S. (2008). Checklist of the freshwater fishes of Colombia. Biota Colombiana, 9(2), 143–237.Google Scholar
  44. Montaña, C. G., Layman, C. A., & Taphorn, D. C. (2008). Comparison of fish assamblages in two littoral habitats in a neotropical Morichal stream in Venezuela. Neotropical Ichthyology, 6(4), 577–582.CrossRefGoogle Scholar
  45. Myers, G. S., & Carvalho, A. (1955). Notes on the classification and names of cyprinodont fishes. Tropical Fish Magazine, 4, 7.Google Scholar
  46. Parenti, L. R. (1981). A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei, Atherinomorpha). Bulletin of the American Museum of Natural History, 168, 335–357.Google Scholar
  47. Parham, J. F., Donoghue, P. C., Bell, C. J., Galway, T. D., Head, J. J., Holroyd, P. A., et al. (2012). Best practices for justifying fossil calibrations. Systematic Biology, 62, 346–359.CrossRefGoogle Scholar
  48. Pohl, M., Milvertz, F. C., Meyer, A., & Vences, M. (2015). Multigene phylogeny of cyprinodontiform fishes suggests continental radiations and a rougue taxon position of Pantanodon. Vertebrate Zoology, 65(1), 37–44.Google Scholar
  49. Pollux, B. J. A., Meredith, R. W., Springer, M. S., Garland, T., & Reznick, D. N. (2014). The evolution of the placenta drives a shift in sexual selection in livebearing fish. Nature, 513, 233–236.CrossRefPubMedGoogle Scholar
  50. Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2013). Tracer, v1.5 http://beast.bio.ed.ac.uk/Trace.
  51. Reznick, D. N., Furness, A. I., Meredith, R. W., & Springer, M. S. (2017). The origin and biogeographic diversification of fishes in the family Poeciliidae. PLoSONE, 12(3), e0172546.  https://doi.org/10.1371/journal.pone.0172546.CrossRefGoogle Scholar
  52. Roberts, T. R. (1970). Description, osteology, and relationships of the Amazonian cyprinodont fish Fluviphylax pygmaeus. Breviora, 347, 1–28.Google Scholar
  53. Roberts, T. R. (1972). Ecology of the fishes in the Amazon and Congo basins. Bulletin of the Museum of Comparative Zoolgy, 143, 117–147.Google Scholar
  54. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Hohna, S., et al. (2011). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542.CrossRefGoogle Scholar
  55. Rosen, D. E. (1973). Suborder Cyprinodontoidei. In D.M. Cohen et al. (Eds.), Fishes of the western North Atlantic (pp. 229-262). Sears Foundation for Marine Research Memoir 1, Pt. 6, Yale University.Google Scholar
  56. Rosen, D. E., & Bailey, R. M. (1963). The poeciliid fishes (Cyprinodontiformes) – their structure, zoogeography and systematics. Bulletin of the American Museum of Natural History, 126, 1–176.Google Scholar
  57. Schneider, C. H., Gross, M. C., Terencio, M. L., & Porto, J. I. R. (2012). Cryptic diversity in the mtDNA of the ornamental fish Carnegiella strigata. Journal of Fish Biology, 81(4), 1210–1224.CrossRefPubMedGoogle Scholar
  58. Swofford, D. L. (2003). PAUP* – Phylogenetic Analysis Using Parsi-mony (*and other methods) version 4b10. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
  59. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Weitzman, S. H., & Vari, R. P. (1988). Miniaturization in South America freshwater fishes: an overview and discussion. Proceedings of the Biological Society of Washington, 101, 444–465.Google Scholar
  61. Wesselingh, F. P. & Hoorn, C. (2011). Geological development of the Amazon and Orinoco basins. In J.S. Albert & R.E. Reis (Eds.), Historical Biogeography of Neotropical Freshwater Fishes (pp. 59–67). The Regents of the University of California.Google Scholar
  62. Wesselingh, F. P., & Salo, J. (2006). A Miocene perspective on the evolution of the Amazoniana biota. Scripta Geologica, 133, 439–445.Google Scholar
  63. Whitley, G. P. (1965). Some fish genera scrutinized. Proceedings of the Royal Zoological Society of New South Wales, 1964–65, 25–26.Google Scholar
  64. Winemiller, K. O. & Willis, S. C. (2011). The Vaupes arch and Casiquiare Canal: barriers and passages. In J. S. Albert & R. E. Reis (Eds.), Historical Biogeography of Neotropical Freshwater Fishes (pp. 225–242). The Regents of the University of California.Google Scholar
  65. Winemiller, K. O., Lopéz-Fernández, H., Taphorn, D. C., Nico, L. G., & Barbarino Duque, A. (2008). Fish assemblages of the Casiquiare River, a corridor and zoogeographical filter for dispersal between the Orinoco and Amazon basins. Journal of Biogeography, 35(9), 1551–1563.CrossRefGoogle Scholar
  66. Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D.dissertation, The University of Texas at Austin.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2018

Authors and Affiliations

  1. 1.Laboratory of Systematics and Evolution of Teleost Fishes, Institute of BiologyFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations