New information on the evolution of mating behaviour in Sepsidae (Diptera) and the cost of male copulations in Saltella sphondylii

  • Denise Siew Hoong Tan
  • Sheng Rong Ng
  • Rudolf MeierEmail author
Original Article


Here we describe the hitherto unknown details of the highly unusual mating behaviour of Saltella sphondylii—a widely cited model for male longevity costs caused by multiple copulations. When compared to the known mating behaviour of 28 sepsid species, we find five unique behavioural elements based on frame-by-frame analyses of video-recordings. These new behaviours are documented with video clips. We suggest that the male longevity costs could be due to copulation bouts that involve multiple insertions of a comparatively membranous phallus into the female. We compare the phallus of the Saltella sphondylii to those from three other species (Themira putris, Parapaleosepsis plebeia, Sepsis punctum).


Sepsidae Mating cost Mating behaviour Longevity Polyandry Sexual conflict 



We would like to thank all members of the Evolutionary Biology Lab, especially Martin Chew for his assistance in generating the molecular phylogeny, and Nalini Puniamoorthy for her helpful comments for the manuscript. This study was financially supported by grant R154-000-476-112 from the Ministry of Education in Singapore.

Supplementary material


(MPG 7602 kb)


 (MPG 21198 kb)


 (MPG 9142 kb)


  1. Ang, Y., Puniamoorthy, N., & Meier, R. (2008). Secondarily reduced foreleg armature in Perochaeta dikowi sp.n. (Diptera: Cyclorrhapha: Sepsidae) due to a novel mounting technique. Systematic Entomology, 33, 552–559.CrossRefGoogle Scholar
  2. Blanckenhorn, W. U., Muhlhauser, C., Morf, C., Reusch, T., & Reuter, M. (2000). Female choice, female reluctance to mate and sexual selection on body size in the dung fly Sepsis cynipsea. Ethology, 106(7), 577–593.CrossRefGoogle Scholar
  3. Blanckenhorn, W. U., Hosken, D. J., Martin, O. Y., Reim, C., Teuschl, Y., & Ward, P. I. (2002). The costs of copulating in the dung fly Sepsis cynipsea. Behavioral Ecology, 13(3), 353–358.CrossRefGoogle Scholar
  4. Blanckenhorn, W. U., Dixon, A. F. G., Fairbairn, D. J., Foellmer, M. W., Gibert, P., van der Linde, K., et al. (2007). Proximate causes of Rensch’s rule: Does sexual size dimorphism in arthropods result from sex differences in development time? The American Naturalist, 169(2), 245–257.PubMedCrossRefGoogle Scholar
  5. Bowsher, J. H., & Nijhout, H. F. (2007). Evolution of novel abdominal appendages in a sepsid fly from histoblasts, not imaginal discs. Evolution & Development, 9(4), 347–354.CrossRefGoogle Scholar
  6. Bowsher, J. H., & Nijhout, H. F. (2009). Partial co-option of the appendage patterning pathway in the development of abdominal appendages in the sepsid fly Themira biloba. Development Genes and Evolution, 219(11–12), 577–587.PubMedCrossRefGoogle Scholar
  7. Burton-Chellew, M. N., Sykes, E. M., Patterson, S., Shuker, D. M., & West, S. A. (2007). The cost of mating and the relationship between body size and fitness in males of the parasitoid wasp Nasonia vitripennis. Evolutionary Ecology Research, 9, 921–934.Google Scholar
  8. Cordts, R., & Partridge, L. (1996). Courtship reduces longevity of male Drosophila melanogaster. Animal Behavior, 52, 269–278.CrossRefGoogle Scholar
  9. Doi, M., Matsuda, M., Tomaru, M., Matsubayashi, H., & Oguma, Y. (2001). A locus for female discrimination behavior causing sexual isolation in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 6714–6719.PubMedCrossRefGoogle Scholar
  10. Eberhard, W. G. (1999). Mating systems of sepsid flies and sexual behavior away from oviposition sites by Sepsis neocynipsea (Diptera: Sepsidae). Journal of the Kansas Entomological Society, 72(1), 129–130.Google Scholar
  11. Eberhard, W. G. (2001a). Courtship and multi-stage transfer of material to the female’s wings during copulation in Microsepsis armillata (Diptera: Sepsidae). Journal of the Kansas Entomological Society, 74(2), 70–78.Google Scholar
  12. Eberhard, W. G. (2001b). Species-specific genitalic copulatory courtship in sepsid flies (Diptera, Sepsidae, Microsepsis) and theories of genitalic evolution. Evolution, 55(1), 93–102.PubMedGoogle Scholar
  13. Eberhard, W. G. (2002a). The function of female resistance behavior: Intromission by male coercion vs. female cooperation in sepsid flies (Diptera: Sepsidae). Revista de Biologia Tropical, 50(2), 485–505.PubMedGoogle Scholar
  14. Eberhard, W. G. (2002b). Physical restraint or stimulation? The function(s) of the modified front legs of male Archisepsis diversiformis (Diptera, Sepsidae). Journal of Insect Behavior, 15(6), 831–850.CrossRefGoogle Scholar
  15. Eberhard, W. G. (2002c). The relation between aggressive and sexual behavior and allometry in Palaeosepsis dentatiformis flies (Diptera: Sepsidae). Journal of the Kansas Entomological Society, 75(4), 317–332.Google Scholar
  16. Eberhard, W. G. (2003). Sexual behavior and morphology of Themira minor (Diptera: Sepsidae) males and the evolution of male sternal lobes and genitalic surstyli. Canadian Entomologist, 135(4), 569–581.CrossRefGoogle Scholar
  17. Eberhard, W. G. (2005). Sexual morphology of male Sepsis cynipsea (Diptera: Sepsidae): lack of support for lock-and key and sexually antagonistic morphological coevolution hypotheses. Canadian Entomologist, 137, 551–565.CrossRefGoogle Scholar
  18. Eberhard, W. G., & Pereira, F. (1996). Functional morphology of male genitalic surstyli in the dungflies Achisepsis diversiformis and A. ecalcarata (Diptera: Sepsidae). Journal of the Kansas Entomological Society, 69(4 SUPPL), 43–60.Google Scholar
  19. Fabricius, J. C. (1794). Entomologia systematica emendata et aucta. Secundum classes, ordines, genera, species adjectis synonymis, locis, observationibus, descriptionibus. Hafniae [= Copenhagen], 4, 1–472.Google Scholar
  20. Ferkau, C., & Fischer, K. (2006). Costs of reproduction in male Bicyclus anynana and Pieris napi butterflies: effects of mating history and food limitation. Ethology, 112, 1117–1127.CrossRefGoogle Scholar
  21. Frey, J. E., Bierbaum, T. J., & Bush, G. L. (1992). Differences among sibling species among Rhagoletis mendax and R. pomonella (Diptera, Tephritidae) in their antennal sensitivity to host fruit compounds. Journal of Chemical Ecology, 18(11), 2011–2024.CrossRefGoogle Scholar
  22. Hammer, O. (1941). Biological and ecological investigations on flies associated with pasturing cattle and their excrement. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Khobenhavn, 105, 141–394.Google Scholar
  23. Hare, E. E., Peterson, B. K., Iyer, V. N., Meier, R., & Eisen, M. B. (2008). Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genetics, 4(6), e1000106.PubMedCrossRefGoogle Scholar
  24. Henry, C. S., Brooks, S. J., Duelli, P., & Johnson, J. B. (2002). Discovering the true Chrysoperla carnea (Insecta: Neuroptera: Chrysopidae) using song analysis, morphology, and ecology. Annals of the Entomological Society of America, 95(2), 172–191.CrossRefGoogle Scholar
  25. Ingram, K. K., Laamanen, T., Puniamoorthy, N., & Meier, R. (2008). Lack of morphological coevolution between male forelegs and female wings in Themira (Sepsidae: Diptera: Insecta). Biological Journal of the Linnean Society, 93(2), 227–238.CrossRefGoogle Scholar
  26. Kotiaho, J. S., & Simmons, L. W. (2003). Longevity cost of reproduction for males but no longevity cost of mating or courtship for females in the male-dimorphic dung beetle Onthophagus binodis. Journal of Insect Physiology, 49, 817–822.PubMedCrossRefGoogle Scholar
  27. Laamanen, T. R., Meier, R., Miller, M. A., Hille, A., & Wiegmann, B. M. (2005). Phylogenetic analysis of Themira (Sepsidae: Diptera): sensitivity analysis, alignment, and indel treatment in a multigene study. Cladistics, 21(3), 258–271.CrossRefGoogle Scholar
  28. Linnaeus, C. (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum caracteribus, differentiis, synonymis, locis. Ed. 10. Holmiae [= Stockholm], 1, 824.Google Scholar
  29. Martin, O. Y., & Hosken, D. J. (2002). Strategic ejaculation in the common dung fly Sepsis cynipsea. Animal Behavior, 63(3), 541–546.CrossRefGoogle Scholar
  30. Martin, O. Y., & Hosken, D. J. (2004). Copulation reduces male but not female longevity in Saltella sphondylli (Diptera: Sepsidae). Journal of Evolutionary Biology, 17, 357–362.PubMedCrossRefGoogle Scholar
  31. Meier, R. (1995a). Cladistic analysis of the Sepsidae (Cyclorrhapha: Diptera) based on a comparative scanning electron microscope study of larvae. Systematic Entomology, 20(2), 99–128.CrossRefGoogle Scholar
  32. Meier, R. (1995b). A comparative SEM study of the eggs of the Sepsidae (Diptera) with a cladistic analysis based on egg, larval and adult characters. Insect Systematics & Evolution, 26(4), 425–438.CrossRefGoogle Scholar
  33. Meier, R. (1996). Larval morphology of the Sepsidae (Diptera: Sciomyzoidea), with a cladistic analysis using adult and larval characters. Bulletin of the American Museum of Natural History, 228, 3–147.Google Scholar
  34. Meier, R. (1997). A test and review of the empirical performance of the ontogenetic criterion. Systematic Biology, 46(4), 699–721.CrossRefGoogle Scholar
  35. de Meijere, J. C. H. (1906). Über einige indo-australische Dipteren des Ungarischen National- Museums, bez. des Naturhistorischen Museums zu Genua. Annales Historico-Naturales Musei Nationalis Hungarici, 4, 165–196.Google Scholar
  36. de Meijere, J. C. H. (1913). H. Sauter’s Formosa Ausbeute. Sepsinae. (Dipt.). Annales Historico-Naturales Musei Nationalis Hungarici, 11, 114–124.Google Scholar
  37. Melander, A. L., & Spuler, A. (1917). The Dipterous families Sepsidae and Piophilidae. Bulletin of the Washington Agricultural Experimental Station, 143, 1–103.Google Scholar
  38. Muhlhauser, C., & Blanckenhorn, W. U. (2002). The costs of avoiding matings in the dung fly Sepsis cynipsea. Behavioral Ecology, 13(3), 359–365.CrossRefGoogle Scholar
  39. Muhlhauser, C., & Blanckenhorn, W. U. (2004). The quantitative genetics of sexual selection in the dung fly Sepsis cynipsea. Behaviour, 141(Part 3), 327–341.CrossRefGoogle Scholar
  40. Oliver, C., & Cordero, C. (2009). Multiple mating reduces male survivorship but not ejaculate size in the polygamous insect Stenomacra marginella (Heteroptera: Largidae). Evolutionary Ecology, 23, 417–424.CrossRefGoogle Scholar
  41. Ozerov, A. L. (2005). World catalogue of the family Sepsidae (Insecta: Diptera). Zoologicheskie issledovania (Zool. Stud.), 8, 1–74.Google Scholar
  42. Parker, G. A. (1972a). Reproductive behaviour of Sepsis cynipsea (L.) (Diptera: Sepsidae) I. A preliminary analysis of the reproductive strategy and its associated behaviour patterns. Behaviour, 41, 172–206.CrossRefGoogle Scholar
  43. Parker, G. A. (1972b). Reproductive behaviour of Sepsis cynipsea (L.) (Diptera: Sepsidae) II. The significance of the precopulatory passive phase and emigration. Behaviour, 41, 242–250.CrossRefGoogle Scholar
  44. Paukku, S., & Kotiaho, J. S. (2005). Cost of reproduction in Callosobruchus maculatus: Effects of mating on male longevity and the effect of male mating status on female longevity. Journal of Insect Physiology, 51, 1220–1226.PubMedCrossRefGoogle Scholar
  45. Pont, A. C., & Meier, R. (2002). The Sepsidae (Diptera) of Europe. Fauna Entomologica Scandinavica, 37, 1–221.Google Scholar
  46. Prowse, N., & Partridge, L. (1997). The effects of reproduction on longevity and fertility in male Drosophila melanogaster. Journal of Insect Physiology, 43, 501–512.PubMedCrossRefGoogle Scholar
  47. Puniamoorthy, N., Su, K. F. Y., & Meier, R. (2008). Bending for love: losses and gains of sexual dimorphisms are strictly correlated with changes in the mounting position of sepsid flies (Sepsidae: Diptera). BMC Evolutionary Biology, 8, 155.PubMedCrossRefGoogle Scholar
  48. Puniamoorthy, N., Ismail, M. R. B., Tan, D. S. H., & Meier, R. (2009). From kissing to belly stridulation: comparative analysis reveals surprising diversity, rapid evolution, and much homoplasy in the mating behaviour of 27 species of sepsid flies (Diptera: Sepsidae). Journal of Evolutionary Biology, 22, 2146–2156.PubMedCrossRefGoogle Scholar
  49. Puniamoorthy, N., Kotrba, M., & Meier, R. (2010). Unlocking the “black box”: internal female genitalia in Sepsidae (Diptera) evolve fast and are species-specific. BMC Evolutionary Biology, 10, 275.PubMedCrossRefGoogle Scholar
  50. Schrank, F. de P., (1803). Fauna boica. Durchgedachte Geschichte der in Baiern einheimischen und zahmen Tiere, Landshut, 3(1), 1–272.Google Scholar
  51. Schulze, K. S. (1999). The evolution of mating systems in black scavenger flies (Diptera: Sepsidae). PhD thesis. University of Arizona.Google Scholar
  52. South, S. H., Steiner, D., & Arnqvist, G. (2009). Male mating costs in a polygynous mosquito with ornaments expressed in both sexes. Proceedings of the Royal Society of London B, 276, 3671–3678.CrossRefGoogle Scholar
  53. Su, K. F. Y., Kutty, S., & Meier, R. (2008). Morphology versus Molecules: The phylogenetic relationships of Sepsidae (Diptera: Cyclorrhapha) based on morphology and DNA sequence data from ten genes. Cladistics, 24, 902–916.CrossRefGoogle Scholar
  54. Tan, D. S. H., Ang, Y., Lim, G. S., Ismail, M. R., & Meier, R. (2010). From ‘cryptic species’ to integrative taxonomy: an iterative process involving DNA sequences, morphology, and behaviour leads to the resurrection of Sepsis pyrrhosoma (Sepsidae: Diptera). Zoologica Scripta, 39, 51–61.CrossRefGoogle Scholar
  55. Ward, P. I., Hemmi, J., & Roosli, T. (1992). Sexual conflict in the dung fly Sepsis cynipsea. Functional Ecology, 6(6), 649–653.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2011

Authors and Affiliations

  • Denise Siew Hoong Tan
    • 1
  • Sheng Rong Ng
    • 1
  • Rudolf Meier
    • 1
    • 2
    Email author
  1. 1.Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  2. 2.University Scholars ProgrammeNational University of SingaporeSingaporeSingapore

Personalised recommendations