Transcriptome analysis reveals the molecular mechanisms of combined gamma-tocotrienol and hydroxychavicol in preventing the proliferation of 1321N1, SW1783, and LN18 glioma cancer cells

  • Amirah Abdul Rahman
  • Norfilza Mohd MokhtarEmail author
  • Roslan Harun
  • Rahman Jamal
  • Wan Zurinah Wan Ngah
Original Article


Gamma-tocotrienol (GTT) and hydroxychavicol (HC) exhibit anticancer activity in glioma cancer cells, where the combination of GTT + HC was shown to be more effective than single agent. The aim of this study was to determine the effect of GTT + HC by measuring the cell cycle progression, migration, invasion, and colony formation of glioma cancer cells and elucidating the changes in gene expression mitigated by GTT + HC that are critical to the chemoprevention of glioma cell lines 1321N1 (grade II), SW1783 (grade III), and LN18 (grade IV) using high-throughput RNA sequencing (RNA-seq). Results of gene expression levels and alternative splicing transcripts were validated by qPCR. Exposure of glioma cancer cells to GTT + HC for 24 h promotes cell cycle arrest at G2M and S phases and inhibits cell migration, invasion, and colony formation of glioma cancer cells. The differential gene expression induced by GTT + HC clustered into response to endoplasmic reticulum (ER) stress, cell cycle regulations, apoptosis, cell migration/invasion, cell growth, and DNA repair. Subnetwork analysis of genes altered by GTT + HC revealed central genes, ATF4 and XBP1. The modulation of EIF2AK3, EDN1, and FOXM1 were unique to 1321N1, while CSF1, KLF4, and FGF2 were unique to SW1783. PLK2 and EIF3A gene expressions were only altered in LN18. Moreover, GTT + HC treatment dynamically altered transcripts and alternative splicing expression. GTT + HC showed therapeutic potential against glioma cancer as evident by the inhibition of cell cycle progression, migration, invasion, and colony formation of glioma cancer cells, as well as the changes in gene expression profiles with key targets in ER unfolded protein response pathway, apoptosis, cell cycle, and migration/invasion.


Gamma-tocotrienol Hydroxychavicol RNA sequencing Gene expression Synergistic effects Chemoprevention 







Endoplasmic reticulum


Multiple testing correction


Benjamini–Hochberg false discovery rate


Gene significant enrichment analysis


Fisher exact test


Unfolded protein response



The authors would like to thank Mohd Faizal Abu Bakar from Malaysian Genome Institute (MGI), Kajang, Malaysia, for his technical assistance with mRNA-Seq analysis and Irni Sahayu Sapian from MGI, Malaysia, for her technical assistance with handling the RNA-Seq equipment.

Authors’ contributions

AAR performed experiments, analysis, and interpretation of data and wrote the manuscript. RJ, RH, and NMM were involved in the general supervision. WZWN designed the study, revised the manuscript, and supervised the study. All authors have read and approved the manuscript.


This study was supported by the Higher Institutions Centre of Excellence (HICoE) grant (Grant No.: 10-64-01-005) from the Ministry of Higher Education, Malaysia.

Compliance with ethical standards

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

Supplementary material

13105_2019_699_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1899 kb)
13105_2019_699_MOESM2_ESM.docx (87 kb)
ESM 2 (DOCX 86 kb)


  1. 1.
    Abdul Rahman A, Jamal AR, Harun R, Mohd Mokhtar N, Wan Ngah WZ (2014) Gamma-tocotrienol and hydroxy-chavicol synergistically inhibits growth and induces apoptosis of human glioma cells. BMC Complement Altern Med 14:213CrossRefGoogle Scholar
  2. 2.
    Alawin OA, Ahmed RA, Ibrahim BA, Briski KP, Sylvester PW (2016) Antiproliferative effects of gamma-tocotrienol are associated with lipid raft disruption in HER2-positive human breast cancer cells. J Nutr Biochem 27:266–277CrossRefGoogle Scholar
  3. 3.
    Allerstorfer S, Sonvilla G, Fischer H, Spiegl-Kreinecker S, Gauglhofer C, Setinek U, Czech T, Marosi C, Buchroithner J, Pichler J, Silye R, Mohr T, Holzmann K, Grasl-Kraupp B, Marian B, Grusch M, Fischer J, Micksche M, Berger W (2008) FGF5 as an oncogenic factor in human glioblastoma multiforme: autocrine and paracrine activities. Oncogene 27:4180–4190CrossRefGoogle Scholar
  4. 4.
    Alonso MM, Alemany R, Fueyo J, Gomez-Manzano C (2008) E2F1 in gliomas: a paradigm of oncogene addiction. Cancer Lett 263:157–163CrossRefGoogle Scholar
  5. 5.
    Alper M, Kockar F (2014) IL-6 upregulates a disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAMTS-2) in human osteosarcoma cells mediated by JNK pathway. Mol Cell Biochem 393:165–175CrossRefGoogle Scholar
  6. 6.
    Alqudah MA, Agarwal S, Al-Keilani MS, Sibenaller ZA, Ryken TC, Assem M (2013) NOTCH3 is a prognostic factor that promotes glioma cell proliferation, migration and invasion via activation of CCND1 and EGFR. PLoS One 8:e77299CrossRefGoogle Scholar
  7. 7.
    Bie L, Zhao G, Cheng P, Rondeau G, Porwollik S, Ju Y, Xia XQ, McClelland M (2011) The accuracy of survival time prediction for patients with glioma is improved by measuring mitotic spindle checkpoint gene expression. PLoS One 6:e25631CrossRefGoogle Scholar
  8. 8.
    Burns TF, Fei P, Scata KA, Dicker DT, El-Deiry WS (2003) Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol Cell Biol 23:5556–5571CrossRefGoogle Scholar
  9. 9.
    Cao Y, Liang H, Zhang F, Luan Z, Zhao S, Wang XA, Liu S, Bao R, Shu Y, Ma Q, Zhu J, Liu Y (2016) Prohibitin overexpression predicts poor prognosis and promotes cell proliferation and invasion through ERK pathway activation in gallbladder cancer. Journal of Experimental & Clinical Cancer Research : CR 35:68CrossRefGoogle Scholar
  10. 10.
    Chakraborty JB, Mahato SK, Joshi K, Shinde V, Rakshit S, Biswas N, Choudhury Mukherjee I, Mandal L, Ganguly D, Chowdhury AA, Chaudhuri J, Paul K, Pal BC, Vinayagam J, Pal C, Manna A, Jaisankar P, Chaudhuri U, Konar A, Roy S, Bandyopadhyay S (2012) Hydroxychavicol, a Piper betel leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance. Cancer Sci 103:88–99CrossRefGoogle Scholar
  11. 11.
    Chang MC, Uang BJ, Wu HL, Lee JJ, Hahn LJ, Jeng JH (2002) Inducing the cell cycle arrest and apoptosis of oral KB carcinoma cells by hydroxychavicol: roles of glutathione and reactive oxygen species. Br J Pharmacol 135:619–630CrossRefGoogle Scholar
  12. 12.
    Chen Y, Jiang J, Zhao M, Luo X, Liang Z, Zhen Y, Fu Q, Deng X, Lin X, Li L et al (2016) microRNA-374a suppresses colon cancer progression by directly reducing CCND1 to inactivate the PI3K/AKT pathway. Oncotarget 7:41306–41319Google Scholar
  13. 13.
    Clarke R, Cook KL (2015) Unfolding the role of stress response signaling in endocrine resistant breast cancers. Front Oncol 5:140CrossRefGoogle Scholar
  14. 14.
    Engelmann D, Putzer BM (2012) The dark side of E2F1: in transit beyond apoptosis. Cancer Res 72:571–575CrossRefGoogle Scholar
  15. 15.
    Galia A, Calogero AE, Condorelli R, Fraggetta F, La Corte A, Ridolfo F, Bosco P, Castiglione R, Salemi M (2012) PARP-1 protein expression in glioblastoma multiforme. European Journal of Histochemistry : EJH 56:e9CrossRefGoogle Scholar
  16. 16.
    Gao Z, Sarsour EH, Kalen AL, Li L, Kumar MG, Goswami PC (2008) Late ROS accumulation and radiosensitivity in SOD1-overexpressing human glioma cells. Free Radic Biol Med 45:1501–1509CrossRefGoogle Scholar
  17. 17.
    Gartel AL (2014) Suppression of the oncogenic transcription factor FOXM1 by proteasome inhibitors. Scientifica 2014:596528CrossRefGoogle Scholar
  18. 18.
    Ghaleb AM, Yang VW (2017) Kruppel-like factor 4 (KLF4): what we currently know. Gene 611:27–37CrossRefGoogle Scholar
  19. 19.
    Gu G, Wang L, Zhang J, Wang H, Tan T, Zhang G (2018) MicroRNA-384 inhibits proliferation migration and invasion of glioma by targeting at CDC42. OncoTargets and Therapy 11:4075–4085CrossRefGoogle Scholar
  20. 20.
    Gu W, Prasadam I, Yu M, Zhang F, Ling P, Xiao Y, Yu C (2015) Gamma tocotrienol targets tyrosine phosphatase SHP2 in mammospheres resulting in cell death through RAS/ERK pathway. BMC Cancer 15:609CrossRefGoogle Scholar
  21. 21.
    Guan N, Huo X, Zhang Z, Zhang S, Luo J, Guo W (2015) Ginsenoside Rh2 inhibits metastasis of glioblastoma multiforme through Akt-regulated MMP13. Tumour Biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 36:6789–6795CrossRefGoogle Scholar
  22. 22.
    Gundala SR, Yang C, Mukkavilli R, Paranjpe R, Brahmbhatt M, Pannu V, Cheng A, Reid MD, Aneja R (2014) Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis. Toxicol Appl Pharmacol 280:86–96CrossRefGoogle Scholar
  23. 23.
    Gutierrez-Erlandsson S, Herrero-Vidal P, Fernandez-Alfara M, Hernandez-Garcia S, Gonzalo-Flores S, Mudarra-Rubio A, Fresno M, Cubelos B (2013) R-RAS2 overexpression in tumors of the human central nervous system. Mol Cancer 12:127CrossRefGoogle Scholar
  24. 24.
    Ha TK, Chi SG (2012) CAV1/caveolin 1 enhances aerobic glycolysis in colon cancer cells via activation of SLC2A3/GLUT3 transcription. Autophagy 8:1684–1685CrossRefGoogle Scholar
  25. 25.
    Halasi M, Gartel AL (2013) Targeting FOXM1 in cancer. Biochem Pharmacol 85:644–652CrossRefGoogle Scholar
  26. 26.
    He J, Olson JJ, James CD (1995) Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. Cancer Res 55:4833–4836Google Scholar
  27. 27.
    Huang HC, Shi J, Orth JD, Mitchison TJ (2009) Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell 16:347–358CrossRefGoogle Scholar
  28. 28.
    Inoue A, Takahashi H, Harada H, Kohno S, Ohue S, Kobayashi K, Yano H, Tanaka J, Ohnishi T (2010) Cancer stem-like cells of glioblastoma characteristically express MMP-13 and display highly invasive activity. Int J Oncol 37:1121–1131Google Scholar
  29. 29.
    Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, Van Meir EG (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479CrossRefGoogle Scholar
  30. 30.
    Jia R, Ajiro M, Yu L, McCoy P Jr, Zheng ZM (2019) Oncogenic splicing factor SRSF3 regulates ILF3 alternative splicing to promote cancer cell proliferation and transformation. Rna 25:630–644CrossRefGoogle Scholar
  31. 31.
    Jiang C, Zhou Y, Huang Y, Wang Y, Wang W, Kuai X (2019) Overexpression of ADAMTS-2 in tumor cells and stroma is predictive of poor clinical prognosis in gastric cancer. Hum Pathol 84:44–51CrossRefGoogle Scholar
  32. 32.
    Kato T, Daigo Y, Aragaki M, Ishikawa K, Sato M, Kaji M (2012) Overexpression of CDC20 predicts poor prognosis in primary non-small cell lung cancer patients. J Surg Oncol 106:423–430CrossRefGoogle Scholar
  33. 33.
    Kok TM, Breda SG, Briede JJ (2012) Genomics-based identification of molecular mechanisms behind the cancer preventive action of phytochemicals: potential and challenges. Curr Pharm Biotechnol 13:255–264CrossRefGoogle Scholar
  34. 34.
    Kumari A, Iwasaki T, Pyndiah S, Cassimere EK, Palani CD, Sakamuro D (2015) Regulation of E2F1-induced apoptosis by poly(ADP-ribosyl)ation. Cell Death Differ 22:311–322CrossRefGoogle Scholar
  35. 35.
    Kuranaga Y, Sugito N, Shinohara H, Tsujino T, Taniguchi K, Komura K, Ito Y, Soga T & Akao Y (2018) SRSF3, a splicer of the PKM gene, regulates cell growth and maintenance of cancer-specific energy metabolism in colon cancer cells. International Journal of Molecular Sciences 19Google Scholar
  36. 36.
    Ladomery M (2013) Aberrant alternative splicing is another hallmark of cancer. International Journal of Cell Biology 2013:463786CrossRefGoogle Scholar
  37. 37.
    Ladu S, Calvisi DF, Conner EA, Farina M, Factor VM, Thorgeirsson SS (2008) E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer. Gastroenterology 135:1322–1332CrossRefGoogle Scholar
  38. 38.
    Lee GY, Haverty PM, Li L, Kljavin NM, Bourgon R, Lee J, Stern H, Modrusan Z, Seshagiri S, Zhang Z, Davis D, Stokoe D, Settleman J, de Sauvage FJ, Neve RM (2014) Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes. Cancer Res 74:3114–3126CrossRefGoogle Scholar
  39. 39.
    Lemiere S, Azar R, Belloc F, Gursel D, Pyronnet S, Bikfalvi A, Auguste P (2008) Overexpression of high molecular weight FGF-2 forms inhibits glioma growth by acting on cell-cycle progression and protein translation. Exp Cell Res 314:3701–3711CrossRefGoogle Scholar
  40. 40.
    Li Y, Sun N, Lu Z, Sun S, Huang J, Chen Z, He J (2017) Prognostic alternative mRNA splicing signature in non-small cell lung cancer. Cancer Lett 393:40–51CrossRefGoogle Scholar
  41. 41.
    Ma Y, Wu L, Liu X, Xu Y, Shi W, Liang Y, Yao L, Zheng J, Zhang J (2017) KLF4 inhibits colorectal cancer cell proliferation dependent on NDRG2 signaling. Oncol Rep 38:975–984CrossRefGoogle Scholar
  42. 42.
    Manini I, Caponnetto F, Bartolini A, Ius T, Mariuzzi L, Di Loreto C, Beltrami AP & Cesselli D (2018) Role of microenvironment in glioma invasion: what we learned from in vitro models. International Journal of Molecular Sciences 19Google Scholar
  43. 43.
    Martin S, Cosset EC, Terrand J, Maglott A, Takeda K, Dontenwill M (2009) Caveolin-1 regulates glioblastoma aggressiveness through the control of alpha(5)beta(1) integrin expression and modulates glioblastoma responsiveness to SJ749, an alpha(5)beta(1) integrin antagonist. Biochim Biophys Acta 1793:354–367CrossRefGoogle Scholar
  44. 44.
    Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2015) Caveolae and signalling in cancer. Nat Rev Cancer 15:225–237CrossRefGoogle Scholar
  45. 45.
    Metellus P, Voutsinos-Porche B, Nanni-Metellus I, Colin C, Fina F, Berenguer C, Dussault N, Boudouresque F, Loundou A, Intagliata D, Chinot O, Martin PM, Figarella-Branger D, Ouafik L’H (2011) Adrenomedullin expression and regulation in human glioblastoma, cultured human glioblastoma cell lines and pilocytic astrocytoma. Eur J Cancer 47:1727–1735CrossRefGoogle Scholar
  46. 46.
    Mukherjee A, Bhattacharyya J, Sagar MV, Chaudhuri A (2013) Liposomally encapsulated CDC20 siRNA inhibits both solid melanoma tumor growth and spontaneous growth of intravenously injected melanoma cells on mouse lung. Drug Delivery and Translational Research 3:224–234CrossRefGoogle Scholar
  47. 47.
    Muramatsu T, Kozaki KI, Imoto S, Yamaguchi R, Tsuda H, Kawano T, Fujiwara N, Morishita M, Miyano S, Inazawa J (2016) The hypusine cascade promotes cancer progression and metastasis through the regulation of RhoA in squamous cell carcinoma. Oncogene 35:5304–5316CrossRefGoogle Scholar
  48. 48.
    Nitta M, Kozono D, Kennedy R, Stommel J, Ng K, Zinn PO, Kushwaha D, Kesari S, Inda MM, Wykosky J, Furnari F, Hoadley KA, Chin L, DePinho R, Cavenee WK, D'Andrea A, Chen CC (2010) Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy. PLoS One 5:e10767CrossRefGoogle Scholar
  49. 49.
    Oakes SA (2017) Endoplasmic reticulum proteostasis: a key checkpoint in cancer. American Journal of Physiology Cell Physiology 312:C93–C102CrossRefGoogle Scholar
  50. 50.
    Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro-oncology 16:896–913CrossRefGoogle Scholar
  51. 51.
    Park SK, Sanders BG, Kline K (2010) Tocotrienols induce apoptosis in breast cancer cell lines via an endoplasmic reticulum stress-dependent increase in extrinsic death receptor signaling. Breast Cancer Res Treat 124:361–375CrossRefGoogle Scholar
  52. 52.
    Patacsil D, Tran AT, Cho YS, Suy S, Saenz F, Malyukova I, Ressom H, Collins SP, Clarke R, Kumar D (2012) Gamma-tocotrienol induced apoptosis is associated with unfolded protein response in human breast cancer cells. J Nutr Biochem 23:93–100CrossRefGoogle Scholar
  53. 53.
    Prasad S, Gupta SC, Tyagi AK, Aggarwal BB (2016) Gamma-Tocotrienol suppresses growth and sensitises human colorectal tumours to capecitabine in a nude mouse xenograft model by down-regulating multiple molecules. Br J Cancer 115:814–824CrossRefGoogle Scholar
  54. 54.
    Robinson MD, Smyth GK (2008) Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9:321–332CrossRefGoogle Scholar
  55. 55.
    Said N, Smith S, Sanchez-Carbayo M, Theodorescu D (2011) Tumor endothelin-1 enhances metastatic colonization of the lung in mouse xenograft models of bladder cancer. J Clin Invest 121:132–147CrossRefGoogle Scholar
  56. 56.
    Siveen KS, Ahn KS, Ong TH, Shanmugam MK, Li F, Yap WN, Kumar AP, Fong CW, Tergaonkar V, Hui KM et al (2014) Y-tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model. Oncotarget 5:1897–1911Google Scholar
  57. 57.
    Tiwari RV, Parajuli P, Sylvester PW (2015) Gamma-tocotrienol-induced endoplasmic reticulum stress and autophagy act concurrently to promote breast cancer cell death. Biochemistry and cell biology = Biochimie et biologie cellulaire 93:306–320CrossRefGoogle Scholar
  58. 58.
    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111CrossRefGoogle Scholar
  59. 59.
    Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578CrossRefGoogle Scholar
  60. 60.
    Wang B, Zhao MZ, Cui NP, Lin DD, Zhang AY, Qin Y, Liu CY, Yan WT, Shi JH, Chen BP (2015) Kruppel-like factor 4 induces apoptosis and inhibits tumorigenic progression in SK-BR-3 breast cancer cells. FEBS Open Bio 5:147–154CrossRefGoogle Scholar
  61. 61.
    Wang M, Kaufman RJ (2014) The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 14:581–597CrossRefGoogle Scholar
  62. 62.
    Wang Z, Zhang S, Siu TL, Huang S (2015) Glioblastoma multiforme formation and EMT: role of FoxM1 transcription factor. Curr Pharm Des 21:1268–1271CrossRefGoogle Scholar
  63. 63.
    Xing Y, Yu T, Wu YN, Roy M, Kim J, Lee C (2006) An expectation-maximization algorithm for probabilistic reconstructions of full-length isoforms from splice graphs. Nucleic Acids Res 34:3150–3160CrossRefGoogle Scholar
  64. 64.
    Xu Z, Zeng X, Tian D, Xu H, Cai Q, Wang J, Chen Q (2014) MicroRNA-383 inhibits anchorage-independent growth and induces cell cycle arrest of glioma cells by targeting CCND1. Biochem Biophys Res Commun 453:833–838CrossRefGoogle Scholar
  65. 65.
    Yang G, Zhang R, Chen X, Mu Y, Ai J, Shi C, Liu Y, Shi C, Sun L, Rainov NG, Li H, Yang B, Zhao S (2011) MiR-106a inhibits glioma cell growth by targeting E2F1 independent of p53 status. J Mol Med 89:1037–1050CrossRefGoogle Scholar
  66. 66.
    Yang R, Wu Y, Wang M, Sun Z, Zou J, Zhang Y, Cui H (2015) HDAC9 promotes glioblastoma growth via TAZ-mediated EGFR pathway activation. Oncotarget 6:7644–7656Google Scholar
  67. 67.
    Yiin JJ, Hu B, Jarzynka MJ, Feng H, Liu KW, Wu JY, Ma HI, Cheng SY (2009) Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity. Neuro-oncology 11:779–789CrossRefGoogle Scholar
  68. 68.
    Yu H, Shen H, Zhang Y, Zhong F, Liu Y, Qin L, Yang P (2014) CAV1 promotes HCC cell progression and metastasis through Wnt/beta-catenin pathway. PLoS One 9:e106451CrossRefGoogle Scholar
  69. 69.
    Zhang Y, Wu D, Xia F, Xian H, Zhu X, Cui H, Huang Z (2016) Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma. Biochem Biophys Res Commun 473:600–606CrossRefGoogle Scholar
  70. 70.
    Zhang YH, Ma K, Liu JR, Wang HX, Tian WX, Tu YH, Sun WG (2018) Gamma-tocotrienol inhibits the invasion and migration of human gastric cancer cells through downregulation of cyclooxygenase-2 expression. Oncol Rep 40:999–1007Google Scholar

Copyright information

© University of Navarra 2019

Authors and Affiliations

  1. 1.Department Biochemistry & Molecular Medicine, Faculty of MedicineUniversiti Teknologi MARASungai BulohMalaysia
  2. 2.UKM Medical Molecular Biology Institute (UMBI)UKM Medical CenterKuala LumpurMalaysia
  3. 3.Department of Physiology, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
  4. 4.KPJ Ampang Putri HospitalAmpangMalaysia
  5. 5.Department of Biochemistry, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia

Personalised recommendations