Advertisement

Journal of Physiology and Biochemistry

, Volume 75, Issue 3, pp 341–349 | Cite as

The regulation of inflammation-related genes after palmitic acid and DHA treatments is not mediated by DNA methylation

  • Mirian Samblas
  • Julia C. Carraro
  • J. Alfredo Martínez
  • Fermín I. MilagroEmail author
ORIGINAL ARTICLE
  • 63 Downloads

Abstract

Fatty acids (FAs) are known to participate in body inflammatory responses. In particular, saturated FAs such as palmitic acid (PA) induce inflammatory signals in macrophages, whereas polyunsaturated FAs, including docosahexaenoic acid (DHA), have been related to anti-inflammatory effects. Several studies have suggested a role of fatty acids on DNA methylation, epigenetically regulating gene expression in inflammation processes. Therefore, this study investigated the effect of PA and DHA on the inflammation-related genes on human macrophages. In addition, a second aim was to study the epigenetic mechanism underlying the effect of FAs on the inflammatory response. For these purposes, human acute monocytic leukaemia cells (THP-1) were differentiated into macrophages with 12-O-tetradecanoylphorbol-13-acetate (TPA), followed by an incubation with PA or DHA. At the end of the experiment, mRNA expression, protein secretion, and CpG methylation of the following inflammatory genes were analysed: interleukin 1 beta (IL1B), tumour necrosis factor (TNF), plasminogen activator inhibitor-1 (SERPINE1) and interleukin 18 (IL18). The results showed that the treatment with PA increased IL-18 and TNF-α production. Contrariwise, the supplementation with DHA reduced IL-18, TNF-α and PAI-1 secretion by macrophages. However, the incubation with these fatty acids did not apparently modify the DNA methylation status of the investigated genes in the screened CpG sites. This research reveals that PA induces important pro-inflammatory markers in human macrophages, whereas DHA decreases the inflammatory response. Apparently, DNA methylation is not directly involved in the fatty acid-mediated regulation of the expression of these inflammation-related genes.

Keywords

Epigenetics Cytokines Macrophages PUFA Saturated fatty acids 

Notes

Acknowledgments

We thank the technical assistance of Enrique Buso (UCIM, University of Valencia) for the MassARRAY® measurements.

Funding details

This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness under grant AGL2013-45554-R; the Spanish Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn); and the Brazilian Ministry of Education, Culture and Sport under grant BES-2014-068409.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any individual participants.

Supplementary material

13105_2019_685_MOESM1_ESM.pptx (57 kb)
ESM 1 (PPTX 57 kb)

References

  1. 1.
    Allam-Ndoul B, Guénard F, Barbier O, Vohl M-C (2016) Effect of n-3 fatty acids on the expression of inflammatory genes in THP-1 macrophages. Lipids Health Dis 15(69):69.  https://doi.org/10.1186/s12944-016-0241-4 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Allam-Ndoul B, Guénard F, Barbier O, Vohl M-C (2017) Effect of different concentrations of omega-3 fatty acids on stimulated THP-1 macrophages. Genes Nutr 12:7.  https://doi.org/10.1186/s12263-017-0554-6 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Allam-Ndoul B, Guénard F, Barbier O, Vohl M-C (2017) A study of the differential effects of Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on gene expression profiles of stimulated Thp-1 macrophages. Nutrients 9:424.  https://doi.org/10.3390/nu9050424 CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Arpón A, Milagro FI, Razquin C, Corella D, Estruch R, Fitó M, Marti A, Martínez-González M, Ros E, Salas-Salvadó J, Riezu-Boj JI, Martínez J (2018) Impact of consuming extra-virgin olive oil or nuts within a mediterranean diet on DNA methylation in peripheral white blood cells within the PREDIMED-Navarra randomized controlled trial: a role for dietary lipids. Nutrients 10:15.  https://doi.org/10.3390/nu10010015 CrossRefGoogle Scholar
  5. 5.
    Burdge GC, Lillycrop KA (2014) Fatty acids and epigenetics. Curr Opin Clin Nutr Metab Care 17:156–161CrossRefPubMedGoogle Scholar
  6. 6.
    Calder PC (2015) Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim Biophys Acta Mol Cell Biol Lipids 1851:469–484CrossRefGoogle Scholar
  7. 7.
    Calder PC (2017) Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 45:1105–1115.  https://doi.org/10.1042/BST20160474 CrossRefPubMedGoogle Scholar
  8. 8.
    Cho Y, Turner ND, Davidson LA, Chapkin RS, Carroll RJ, Lupton JR (2014) Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation. Exp Biol Med 239:302–310.  https://doi.org/10.1177/1535370213514927 CrossRefGoogle Scholar
  9. 9.
    Coleman SL, Park YK, Lee JY (2011) Unsaturated fatty acids repress the expression of adipocyte fatty acid binding protein via the modulation of histone deacetylation in RAW 264.7 macrophages. Eur J Nutr 50:323–330.  https://doi.org/10.1007/s00394-010-0140-9 CrossRefPubMedGoogle Scholar
  10. 10.
    Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, Cantor CR, Field JK, van den Boom D (2005) Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci 102:15785–15790.  https://doi.org/10.1073/pnas.0507816102 CrossRefPubMedGoogle Scholar
  11. 11.
    Flores-Sierra J, Arredondo-Guerrero M, Cervantes-Paz B, Rodríguez-Ríos D, Alvarado-Caudillo Y, Nielsen FC, Wrobel K, Wrobel K, Zaina S, Lund G (2016) The trans fatty acid elaidate affects the global DNA methylation profile of cultured cells and in vivo. Lipids Health Dis 15:75.  https://doi.org/10.1186/s12944-016-0243-2 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fogel O, Richard-Miceli C, Tost J (2017) Epigenetic changes in chronic inflammatory diseases. In: Advances in protein chemistry and structural biology. Academic Press, pp 139–189Google Scholar
  13. 13.
    Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A (2018) Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14:576–590CrossRefPubMedGoogle Scholar
  14. 14.
    García-Escobar E, Monastero R, García-Serrano S, Gómez-Zumaquero JM, Lago-Sampedro A, Rubio-Martín E, Colomo N, Rodríguez-Pacheco F, Soriguer F, Rojo-Martínez G (2017) Dietary fatty acids modulate adipocyte TNFa production via regulation of its DNA promoter methylation levels. J Nutr Biochem 47:106–112.  https://doi.org/10.1016/j.jnutbio.2017.05.006 CrossRefPubMedGoogle Scholar
  15. 15.
    González-Muniesa P, De Oliveira C, Pérez De Heredia F et al (2011) Fatty acids and hypoxia stimulate the expression and secretion of the adipokine ANGPTL4 (angiopoietin-like protein 4/ fasting-induced adipose factor) by human adipocytes. J Nutrigenet Nutrigenomics 4:146–153.  https://doi.org/10.1159/000327774 CrossRefPubMedGoogle Scholar
  16. 16.
    Hall E, Volkov P, Dayeh T, Bacos K, Rönn T, Nitert MD, Ling C (2014) Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med 12:103.  https://doi.org/10.1186/1741-7015-12-103 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    He Z, Zhang R, Jiang F, Zhang H, Zhao A, Xu B, Jin L, Wang T, Jia W, Jia W, Hu C (2018) FADS1-FADS2 genetic polymorphisms are associated with fatty acid metabolism through changes in DNA methylation and gene expression. Clin Epigenetics 10:113.  https://doi.org/10.1186/s13148-018-0545-5 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Holmes MV, Pulit SL, Lindgren CM (2017) Genetic and epigenetic studies of adiposity and cardiometabolic disease. Genome Med 9:82.  https://doi.org/10.1186/s13073-017-0474-5 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kien CL, Bunn JY, Stevens R, Bain J, Ikayeva O, Crain K, Koves TR, Muoio DM (2014) Dietary intake of palmitate and oleate has broad impact on systemic and tissue lipid profiles in humans. Am J Clin Nutr 99:436–445.  https://doi.org/10.3945/ajcn.113.070557 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kirwan AM, Lenighan YM, O’Reilly ME et al (2017) Nutritional modulation of metabolic inflammation. Biochem Soc Trans 45:979–985.  https://doi.org/10.1042/BST20160465 CrossRefPubMedGoogle Scholar
  22. 22.
    Krämer B, Meichle A, Hensel G, Charnay P, Krönke M (1994) Characterization of an Krox-24/Egr-1-responsive element in the human tumor necrosis factor promoter. Biochim Biophys Acta 1219:413–421CrossRefPubMedGoogle Scholar
  23. 23.
    Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, Schoenfelt KQ, Kuzma JN, Larson I, Billing PS, Landerholm RW, Crouthamel M, Gozal D, Hwang S, Singh PK, Becker L (2014) Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab 20:614–625.  https://doi.org/10.1016/j.cmet.2014.08.010 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lee C, Huang CH (2014) LASAGNA-search 2.0: integrated transcription factor binding site search and visualization in a browser. Bioinformatics 30:1923–1925.  https://doi.org/10.1093/bioinformatics/btu115 CrossRefPubMedGoogle Scholar
  25. 25.
    Liddle DM, Hutchinson AL, Wellings HR, Power K, Robinson L, Monk J (2017) Integrated immunomodulatory mechanisms through which long-chain n-3 polyunsaturated fatty acids attenuate obese adipose tissue dysfunction. Nutrients 9:1289CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Lorente-Cebrián S, Costa AGV, Navas-Carretero S, Zabala M, Laiglesia LM, Martínez JA, Moreno-Aliaga MJ (2015) An update on the role of omega-3 fatty acids on inflammatory and degenerative diseases. J Physiol Biochem 71:341–349CrossRefPubMedGoogle Scholar
  27. 27.
    Ma Y, Smith CE, Lai C-Q, Irvin MR, Parnell LD, Lee YC, Pham LD, Aslibekyan S, Claas SA, Tsai MY, Borecki IB, Kabagambe EK, Ordovás JM, Absher DM, Arnett DK (2016) The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter. Mol Nutr Food Res 60:410–419.  https://doi.org/10.1002/mnfr.201500436 CrossRefPubMedGoogle Scholar
  28. 28.
    Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229:176–185CrossRefPubMedGoogle Scholar
  29. 29.
    Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A (2015) Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J 29:3595–3611.  https://doi.org/10.1096/fj.14-260323 CrossRefPubMedGoogle Scholar
  30. 30.
    Milagro FI, Mansego ML, De Miguel C, Martinez JA (2013) Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Asp Med 34:782–812CrossRefGoogle Scholar
  31. 31.
    Mullen A, Loscher CE, Roche HM (2010) Anti-inflammatory effects of EPA and DHA are dependent upon time and dose-response elements associated with LPS stimulation in THP-1-derived macrophages. J Nutr Biochem 21:444–450.  https://doi.org/10.1016/j.jnutbio.2009.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nicoletti CF, Nonino CB, de Oliveira BAP, Pinhel MAS, Mansego ML, Milagro FI, Zulet MA, Martinez JA (2016) DNA methylation and Hydroxymethylation levels in relation to two weight loss strategies: energy-restricted diet or bariatric surgery. Obes Surg 26:603–611.  https://doi.org/10.1007/s11695-015-1802-8 CrossRefPubMedGoogle Scholar
  33. 33.
    Oliver E, McGillicuddy FC, Harford KA et al (2012) Docosahexaenoic acid attenuates macrophage-induced inflammation and improves insulin sensitivity in adipocytes-specific differential effects between LC n-3 PUFA. J Nutr Biochem 23:1192–1200.  https://doi.org/10.1016/j.jnutbio.2011.06.014 CrossRefPubMedGoogle Scholar
  34. 34.
    Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M (2018) Palmitic and oleic acid: the yin and Yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol Metab 29:178–190CrossRefPubMedGoogle Scholar
  35. 35.
    Perfilyev A, Dahlman I, Gillberg L, Rosqvist F, Iggman D, Volkov P, Nilsson E, Risérus U, Ling C (2017) Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr 105:991–1000.  https://doi.org/10.3945/ajcn.116.143164 CrossRefPubMedGoogle Scholar
  36. 36.
    Pot GK, Brouwer IA, Enneman A, Rijkers GT, Kampman E, Geelen A (2009) No effect of fish oil supplementation on serum inflammatory markers and their interrelationships: a randomized controlled trial in healthy, middle-aged individuals. Eur J Clin Nutr 63:1353–1359.  https://doi.org/10.1038/ejcn.2009.63 CrossRefPubMedGoogle Scholar
  37. 37.
    Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, MacDonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230.  https://doi.org/10.1038/nature03076 CrossRefGoogle Scholar
  38. 38.
    Ramaiyan B, Talahalli RR (2018) Dietary unsaturated fatty acids modulate maternal dyslipidemia-induced DNA methylation and histone acetylation in placenta and fetal liver in rats. Lipids 53:581–588.  https://doi.org/10.1002/lipd.12074 CrossRefPubMedGoogle Scholar
  39. 39.
    Raman S, FitzGerald U, Murphy JM (2018) Interplay of inflammatory mediators with epigenetics and cartilage modifications in osteoarthritis. Front Bioeng Biotechnol 6:22.  https://doi.org/10.3389/fbioe.2018.00022 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2ˆ(−delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 3:71–85PubMedPubMedCentralGoogle Scholar
  41. 41.
    Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610CrossRefPubMedGoogle Scholar
  42. 42.
    Rodríguez-Monforte M, Sánchez E, Barrio F, Costa B, Flores-Mateo G (2017) Metabolic syndrome and dietary patterns: a systematic review and meta-analysis of observational studies. Eur J Nutr 56:925–947CrossRefPubMedGoogle Scholar
  43. 43.
    Rogero MM, Calder PC (2018) Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients 10:432CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Samblas M, Martínez JA, Milagro F (2018) Folic acid improves the inflammatory response in LPS-activated THP-1 macrophages. Mediat Inflamm 2018:1–8.  https://doi.org/10.1155/2018/1312626 CrossRefGoogle Scholar
  45. 45.
    Sarabi MM, Naghibalhossaini F (2018) The impact of polyunsaturated fatty acids on DNA methylation and expression of DNMTs in human colorectal cancer cells. Biomed Pharmacother 101:94–99.  https://doi.org/10.1016/j.biopha.2018.02.077 CrossRefPubMedGoogle Scholar
  46. 46.
    Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762–774.  https://doi.org/10.1038/nri3070.Monocyte CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Shi C, Pamer EG (2014) Monocyte recruitment Suring infection and inflammation. Nat Rev Immunol 11:762–774.  https://doi.org/10.1038/nri3070.Monocyte CrossRefGoogle Scholar
  48. 48.
    Silva Figueiredo P, Carla Inada A, Marcelino G, Maiara Lopes Cardozo C, de Cássia Freitas K, de Cássia Avellaneda Guimarães R, Pereira de Castro A, Aragão do Nascimento V, Aiko Hiane P (2017) Fatty acids consumption: the role metabolic aspects involved in obesity and its associated disorders. Nutrients 9:1158.  https://doi.org/10.3390/nu9101158 CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Silva-Martínez GA, Rodríguez-Ríos D, Alvarado-Caudillo Y, Vaquero A, Esteller M, Carmona FJ, Moran S, Nielsen FC, Wickström-Lindholm M, Wrobel K, Wrobel K, Barbosa-Sabanero G, Zaina S, Lund G (2016) Arachidonic and oleic acid exert distinct effects on the DNA methylome. Epigenetics 11:321–334.  https://doi.org/10.1080/15592294.2016.1161873 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Snodgrass RG, Huang S, Namgaladze D, Jandali O, Shao T, Sama S, Brüne B, Hwang DH (2016) Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress. J Nutr Biochem 32:39–45.  https://doi.org/10.1016/j.jnutbio.2016.01.010 CrossRefPubMedGoogle Scholar
  51. 51.
    Staiger H, Staiger K, Stefan N, Wahl HG, Machicao F, Kellerer M, Haring HU (2004) Palmitate-induced interleukin-6 expression in human coronary artery endothelial cells. Diabetes 53:3209–3216.  https://doi.org/10.2337/diabetes.53.12.3209 CrossRefPubMedGoogle Scholar
  52. 52.
    Tsai EY, Falvo JV, Tsytsykova AV, Barczak AK, Reimold AM, Glimcher LH, Fenton MJ, Gordon DC, Dunn IF, Goldfeld AE (2000) A lipopolysaccharide-specific enhancer complex involving Ets, Elk-1, Sp1, and CREB binding protein and p300 is recruited to the tumor necrosis factor alpha promoter in vivo. Mol Cell Biol 20:6084–6094CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524CrossRefGoogle Scholar
  54. 54.
    Yao L, Han C, Song K, Zhang J, Lim K, Wu T (2015) Omega-3 polyunsaturated fatty acids upregulate 15-PGDH expression in cholangiocarcinoma cells by inhibiting miR-26a/b expression. Cancer Res 75:1388–1398.  https://doi.org/10.1158/0008-5472.CAN-14-2561 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zhu H, Wang G, Qian J (2016) Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet 17:551–565.  https://doi.org/10.1038/nrg.2016.83 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© University of Navarra 2019

Authors and Affiliations

  1. 1.Department of Nutrition, Food Science and Physiology, Centre for Nutrition ResearchUniversity of NavarraPamplonaSpain
  2. 2.Department of Clinical and Social NutritionUniversidade Federal de Ouro PretoOuro PretoBrazil
  3. 3.CIBERobn, CIBER Fisiopatología de la Obesidad y NutriciónInstituto de Salud Carlos IIIMadridSpain
  4. 4.Navarra Institute for Health Research (IdiSNA)PamplonaSpain
  5. 5.IMDEA FoodResearch Institute of Food & Health SciencesMadridSpain

Personalised recommendations