Advertisement

Diabetes abolish cardioprotective effects of remote ischemic conditioning: evidences and possible mechanisms

  • Sakshi Tyagi
  • Nirmal Singh
  • Jasleen kaur Virdi
  • Amteshwar Singh JaggiEmail author
Review
  • 13 Downloads

Abstract

Diabetes mellitus significantly hampers the development of cardioprotective response to remote pre/post/perconditioning stimuli by impairing the activation of cardioprotective signaling pathways. Among the different pathways, the impairment in O-linked β-N-acetylglucosamine (O-GlcNAc) signaling and release of cardioprotective humoral factor may contribute in attenuating remote preconditioning-induced cardioprotection. Moreover, the failure to phosphorylate extracellular signal related kinase (ERK), phosphoinositide-3-kinase (PI3K), and AKT along with up-regulation of mechanistic target of rapamycin (mTOR) and decrease in autophagy may also attenuate remote preconditioning-induced cardioprotection. Remote perconditioning stimulus also fails to phosphorylate AKT kinase in diabetic heart. In addition, diabetes may increase the oxidative stress, reactive oxygen species (ROS) production, decrease the beclin expression, and inhibit autophagy to attenuate remote perconditioning-induced cardioprotection. Moreover, diabetes-induced increase in the Rho-associated kinase (ROCK) activity, decrease in the arginase activity, and reduction in nitric oxide (NO) bioavailability may also contribute in decreasing remote perconditioning-induced cardioprotection. Diabetes may reduce the phosphorylation of adenosine 5′-monophosphate activated protein kinase (AMPKα) and increase the phosphorylation of mTOR to attenuate cardioprotection of remote postconditioning. The present review describes the role of diabetes in attenuating remote ischemic conditioning-induced cardioprotection along with the possible mechanisms.

Keywords

Oxidative stress Heart Diabetes Autophagy ROCK 

Notes

Acknowledgements

The authors are thankful to the Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India for supporting the study.

Compliance with ethical standards

Disclosure of potential conflicts of interest

The authors declare no conflict of interests.

Research involving human participants and/or animals

The study did not involve usage of animals or employment of human participants.

Informed consent

The study did not involve participants of human volunteers.

References

  1. 1.
    Ansley DM, Wang B (2013 Jan) Oxidative stress and myocardial injury in the diabetic heart. J Pathol 229(2):232–241Google Scholar
  2. 2.
    Aulakh AS, Randhawa PK, Singh N, Jaggi AS (2017 Mar) Neurogenic pathways in remote ischemic preconditioning induced cardioprotection: evidences and possible mechanisms. Korean J Physiol Pharmacol 21(2):145–152Google Scholar
  3. 3.
    Bao W, Hu E, Tao L, Boyce R, Mirabile R, Thudium DT, Ma XL, Willette RN, Yue TL (2004) Inhibition of rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovasc Res 61(3):548–558Google Scholar
  4. 4.
    Baranyai T, Nagy CT, Koncsos G, Onódi Z, Károlyi-Szabó M, Makkos A, Varga ZV, Ferdinandy P, Giricz Z (2015) Acute hyperglycemia abolishes cardioprotection by remote ischemic perconditioning. Cardiovasc Diabetol 14:151Google Scholar
  5. 5.
    Birnbaum Y, Hale SL, Kloner RA (1997) Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation 96(5):1641–1646Google Scholar
  6. 6.
    Bøtker HE, Kharbanda R, Schmidt MR, Bøttcher M, Kaltoft AK, Terkelsen CJ, Munk K, Andersen NH, Hansen TM, Trautner S, Lassen JF, Christiansen EH, Krusell LR, Kristensen SD, Thuesen L, Nielsen SS, Rehling M, Sørensen HT, Redington AN, Nielsen TT (2010) Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375(9716):727–734Google Scholar
  7. 7.
    Cheung MM, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J, Holtby HM, Cox PN, Smallhorn JF, Van Arsdell GS, Redington AN (2006) Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol 47(11):2277–2282Google Scholar
  8. 8.
    Cleveland JC Jr, Meldrum DR, Cain BS, Banerjee A, Harken AH (1997) Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium. Two paradoxes revisited. Circulation 96(1):29–32Google Scholar
  9. 9.
    Corcoran D, Young R, Cialdella P, McCartney P, Bajrangee A, Hennigan B, Collison D, Carrick D, Shaukat A, Good R, Watkins S, McEntegart M, Watt J, Welsh P, Sattar N, McConnachie A, Oldroyd KG, Berry C (2018) The effects of remote ischaemic preconditioning on coronary artery function in patients with stable coronary artery disease. Int J Cardiol 252:24–30Google Scholar
  10. 10.
    Crimi G, Pica S, Raineri C, Bramucci E, De Ferrari GM, Klersy C, Ferlini M, Marinoni B, Repetto A, Romeo M, Rosti V, Massa M, Raisaro A, Leonardi S, Rubartelli P, Oltrona Visconti L, Ferrario M (2013) Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction: a randomized controlled trial. JACC Cardiovasc Interv 6(10):1055–1063Google Scholar
  11. 11.
    Das A, Durrant D, Koka S, Salloum FN, Xi L, Kukreja RC (2014) Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression. J Biol Chem 289(7):4145–4160Google Scholar
  12. 12.
    Diwan V, Kant R, Jaggi AS, Singh N, Singh D (2008) Signal mechanism activated by erythropoietin preconditioning and remote renal preconditioning-induced cardioprotection. Mol Cell Biochem 315(1–2):195–201Google Scholar
  13. 13.
    Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R (2014) Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66(4):1142–1174Google Scholar
  14. 14.
    Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, Berthault MF, Magnan C, Cerasi E, Kaiser N, Leibowitz G (2008) mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57(4):945–957Google Scholar
  15. 15.
    Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD (1996) Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94(9):2193–2200Google Scholar
  16. 16.
    Han Z, Cao J, Song D, Tian L, Chen K, Wang Y, Gao L, Yin Z, Fan Y, Wang C (2014) Autophagy is involved in the cardioprotection effect of remote limb ischemic postconditioning on myocardial ischemia/reperfusion injury in normal mice, but not diabetic mice. PLoS One 9(1):e86838Google Scholar
  17. 17.
    Hao M, Zhu S, Hu L, Zhu H, Wu X, Li Q (2017) Myocardial ischemic postconditioning promotes autophagy against ischemia reperfusion injury via the activation of the nNOS/AMPK/mTOR pathway. Int J Mol Sci 18(3):614Google Scholar
  18. 18.
    Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia–reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 61(3):448–460Google Scholar
  19. 19.
    Hausenloy DJ, Candilio L, Evans R, Ariti C, Jenkins DP, Kolvekar S, Knight R, Kunst G, Laing C, Nicholas J, Pepper J, Robertson S, Xenou M, Clayton T, Yellon DM (2015) Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med 373:1408–1417Google Scholar
  20. 20.
    Heung Yong J, Baek HS, Park TS (2015) Morphologic changes in autonomic nerves in diabetic autonomic neuropathy. Diabetes Metab J 39(6):461–467Google Scholar
  21. 21.
    Hu Z, Chen M, Zhang P, Liu J, Abbott GW (2017) Remote ischemic preconditioning differentially attenuates post-ischemic cardiac arrhythmia in streptozotocin-induced diabetic versus nondiabetic rats. Cardiovasc Diabetol 16(1):57Google Scholar
  22. 22.
    Iliodromitis EK, Cohen MV, Dagres N, Andreadou I, Kremastinos DT, Downey JM (2015) What is wrong with cardiac conditioning? We may be shooting at moving targets. J Cardiovasc Pharmacol Ther 20(4):357–369Google Scholar
  23. 23.
    Jensen RV, Støttrup NB, Kristiansen SB, Bøtker HE (2012) Release of a humoral circulating cardioprotective factor by remote ischemic preconditioning is dependent on preserved neural pathways in diabetic patients. Basic Res Cardiol 107(5):285Google Scholar
  24. 24.
    Jensen RV, Zachara NE, Nielsen PH, Kimose HH, Kristiansen SB, Bøtker HE (2013) Impact of O-GlcNAc on cardioprotection by remote ischaemic preconditioning in non-diabetic and diabetic patients. Cardiovasc Res 97(2):369–378Google Scholar
  25. 25.
    Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241(19):2035–2038Google Scholar
  26. 26.
    Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R (2002) Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 106(23):2881–2883Google Scholar
  27. 27.
    Kiss A, Tratsiakovich Y, Gonon AT, Fedotovskaya O, Lanner J, Andersson DC, Yang J, Pernow J (2014a) The role of arginase and rho kinase in cardioprotection from remote ischemic perconditioning in non-diabetic and diabetic rat in vivo. PLoS One 9(8):e104731Google Scholar
  28. 28.
    Kiss A, Tratsiakovich Y, Gonon AT, Fedotovskaya O, Lanner JT, Andersson DC, Yang J, Pernow J (2014b) The role of arginase and rho kinase in cardioprotection from remote ischemic perconditioning in non-diabetic and diabetic rat in vivo. PLoS One 9(8):e104731Google Scholar
  29. 29.
    Kobayashi S, Xu X, Chen K, Liang Q (2012) Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury. Autophagy 8(4):577–592Google Scholar
  30. 30.
    Kottenberg E, Musiolik J, Thielmann M, Jakob H, Peters J, Heusch G (2014) Interference of propofol with signal transducer and activator of transcription 5 activation and cardioprotection by remote ischemic preconditioning during coronary artery bypass grafting. J Thorac Cardiovasc Surg 147(1):376–382Google Scholar
  31. 31.
    Lambert JP, Nicholson CK, Amin H, Amin S, Calvert JW (2014) Hydrogen sulfide provides cardioprotection against myocardial/ischemia reperfusion injury in the diabetic state through the activation of the RISK pathway. Med Gas Res 4(1):20Google Scholar
  32. 32.
    Lambert EA, Thomas CJ, Hemmes R, Eikelis N, Pathak A, Schlaich MP, Lambert GW (2016) Sympathetic nervous response to ischemia–reperfusion injury in humans is altered with remote ischemic preconditioning. Am J Physiol Heart Circ Physiol 311:H364–H370Google Scholar
  33. 33.
    Lee TM, Su SF, Chou TF, Lee YT, Tsai CH (2002) Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation 105(3):334–340Google Scholar
  34. 34.
    Lewis P, Stefanovic N, Pete J, Calkin AC, Giunti S, Thallas-Bonke V, Jandeleit-Dahm KA, Allen TJ, Kola I, Cooper ME, de Haan JB (2007) Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation 115(16):2178–2187Google Scholar
  35. 35.
    Lim SY, Yellon DM, Hausenloy DJ (2010) The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res Cardiol 105(5):651–655Google Scholar
  36. 36.
    Lindholm CR, Ertel RL, Bauwens JD, Schmuck EG, Mulligan JD, Saupe KW (2013) A high-fat diet decreases AMPK activity in multiple tissues in the absence of hyperglycemia or systemic inflammation in rats. J Physiol Biochem 69(2):165–175Google Scholar
  37. 37.
    Loubani M, Fowler A, Standen NB, Galiñanes M (2005) The effect of gliclazide and glibenclamide on preconditioning of the human myocardium. Eur J Pharmacol 515(1–3):142–149Google Scholar
  38. 38.
    Mapanga RF, Joseph D, Symington B, Garson KL, Kimar C, Kelly-Laubscher R, Essop MF (2014) Detrimental effects of acute hyperglycaemia on the rat heart. Acta Physiol (Oxf) 210(3):546–564Google Scholar
  39. 39.
    McCafferty K, Forbes S, Thiemermann C, Yaqoob MM (2014) The challenge of translating ischemic conditioning from animal models to humans: the role of comorbidities. Dis Model Mech 7(12):1321–1333Google Scholar
  40. 40.
    Meybohm P, Bein B, Brosteanu O, Cremer J, Gruenewald M, Stoppe C, Coburn M, Schaelte G, Boning A, Niemann B, Roesner J, Kletzin F, Strouhal U, Reyher C, Laufenberg-Feldmann R, Ferner M, Brandes IF, Bauer M, Stehr SN, Kortgen A, Wittmann M, Baumgarten G, Meyer-Treschan T, Kienbaum P, Heringlake M, Schon J, Sander M, Treskatsch S, Smul T, Wolwender E, Schilling T, Fuernau G, Hasenclever D, Zacharowski K (2015) A multicenter trial of remote ischemic preconditioning for heart surgery. N Engl J Med 373:1397–1407Google Scholar
  41. 41.
    Motta GL, Souza PC, EBdos S, Bona SR, Schaefer PG, Lima CAT, Marroni NAP, Corso CO (2018) Effects of remote ischemic preconditioning and topical hypothermia in renal ischemia–reperfusion injury in rats. Acta Cir Bras 33(5):396–407Google Scholar
  42. 42.
    Przyklenk K (2011) Efficacy of cardioprotective ‘conditioning’ strategies in aging and diabetic cohorts the co-morbidity conundrum. Drugs Aging 28(5):331–343Google Scholar
  43. 43.
    Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87(3):893–899Google Scholar
  44. 44.
    Qian J, Ren X, Wang X, Zhang P, Jones WK, Molkentin JD, Fan G, Kranias EG (2009) Blockade of Hsp20 phosphorylation exacerbates cardiac ischemia/reperfusion injury by suppressed autophagy and increased cell death. Circ Res 105:1223–1231Google Scholar
  45. 45.
    Ramakrishna V, Jailkhani R (2008) Oxidative stress in non-insulin-dependent diabetes mellitus (NIDDM) patients. Acta Diabetol 45(1):41–46Google Scholar
  46. 46.
    Randhawa PK, Jaggi AS (2016) Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels. Arch Pharmacol 389(8):887–896Google Scholar
  47. 47.
    Randhawa PK, Jaggi AS (2017a) Investigating the involvement of glycogen synthase kinase-3β and gap junction signaling in TRPV1 and remote hind preconditioning-induced cardioprotection. Eur J Pharmacol 814:9–17Google Scholar
  48. 48.
    Randhawa PK, Jaggi AS (2017b) Investigating the involvement of TRPV1 ion channels in remote hind limb preconditioning-induced cardioprotection in rats. Naunyn Schmiedeberg's Arch Pharmacol 390(2):117–126Google Scholar
  49. 49.
    Randhawa PK, Jaggi AS (2017c) Opioids in remote ischemic preconditioning-induced cardioprotection. J Cardiovasc Pharmacol Ther 22(2):112–121Google Scholar
  50. 50.
    Randhawa PK, Bali A, Jaggi AS (2015) RIPC for multiorgan salvage in clinical settings: evolution of concept, evidences and mechanisms. Eur J Pharmacol 746:317–332Google Scholar
  51. 51.
    Randhawa PK, Bali A, Virdi JK, Jaggi AS (2018) Conditioning-induced cardioprotection: aging as a confounding factor. Korean J Physiol Pharmacol. 22(5):467–479Google Scholar
  52. 52.
    Rohailla S, Clarizia N, Sourour M, Sourour W, Gelber N, Wei C, Li J, Redington AN (2014) Acute, delayed and chronic remote ischemic conditioning is associated with downregulation of mTOR and enhanced autophagy signaling. PLoS One 9(10):e111291Google Scholar
  53. 53.
    Rossello X, Yellon DM (2017) The RISK pathway and beyond. Basic Res Cardiol 113(1):2Google Scholar
  54. 54.
    Saxena P, Newman MA, Shehatha JS, Redington AN, Konstantinov IE (2010) Remote ischemic conditioning: evolution of the concept, mechanisms, and clinical application. J Card Surg 25(1):127–134Google Scholar
  55. 55.
    Schmidt MR, Smerup M, Konstantinov IE, Shimizu M, Li J, Cheung M, White PA, Kristiansen SB, Sorensen K, Dzavik V, Redington AN, Kharbanda RK (2007) Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning. Am J Physiol Heart Circ Physiol 292(4):H1883–H1890Google Scholar
  56. 56.
    Schmidt MR, Rasmussen ME, Bøtker HE (2017) Remote ischemic conditioning for patients with STEMI. J Cardiovasc Pharmacol Ther 22(4):302–309Google Scholar
  57. 57.
    Singh H, Kumar M, Singh N, Jaggi AS (2018) Late phases of cardioprotection during remote ischemic preconditioning and adenosine preconditioning involves activation of neurogenic pathway. J Cardiovasc Pharmacol.  https://doi.org/10.1097/FJC.0000000000000634
  58. 58.
    Su H, Ji L, Xing W, Zhang W, Zhou H, Qian X, Wang X, Gao F, Sun X, Zhang H (2013) Acute hyperglycaemia enhances oxidative stress and aggravates myocardial ischaemia/reperfusion injury: role of thioredoxin-interacting protein. J Cell Mol Med 17(1):181–191Google Scholar
  59. 59.
    Sun Z, Wu X, Li W, Peng H, Shen X, Ma L, Liu H, Li H (2016) RhoA/rock signaling mediates peroxynitrite-induced functional impairment of rat coronary vessels. BMC Cardiovasc Disord 16(1):193Google Scholar
  60. 60.
    Tan W, Zhang C, Liu J, Li X, Chen Y, Miao Q (2018) Remote ischemic preconditioning has a cardioprotective effect in children in the early postoperative phase: a meta-analysis of randomized controlled trials. Pediatr Cardiol 39(3):617–626Google Scholar
  61. 61.
    Varga ZV, Giricz Z, Bencsik P, Madonna R, Gyongyosi M, Schulz R, Mayr M, Thum T, Puskas LG, Ferdinandy P (2015) Functional genomics of cardioprotection by ischemic conditioning and the influence of comorbid conditions: implications in target identification. Curr Drug Targets 16(8):904–911Google Scholar
  62. 62.
    Völkers M, Konstandin MH, Doroudgar S, Toko H, Quijada P, Din S, Joyo A, Ornelas L, Samse K, Thuerauf DJ, Gude N, Glembotski CC, Sussman MA (2013) Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage. Circulation 128(19):2132–2144Google Scholar
  63. 63.
    Voucharas C, Lazou A, Triposkiadis F, Tsilimingas N (2011 Mar 23) Remote preconditioning in normal and hypertrophic rat hearts. J Cardiothorac Surg 6:34Google Scholar
  64. 64.
    Wider J, Przyklenk K (2014) Ischemic conditioning: the challenge of protecting the diabetic heart. Cardiovasc Diagn Ther 4(5):383–396Google Scholar
  65. 65.
    Yamamoto K, Maruyama K, Himori N, Omodaka K, Yokoyama Y, Shiga Y, Morin R, Nakazawa T (2014) The novel rho kinase (ROCK) inhibitor K-115: a new candidate drug for neuroprotective treatment in glaucoma. Invest Ophthalmol Vis Sci 55(11):7126–7136Google Scholar
  66. 66.
    Zhang J, Liu XB, Cheng C, Xu DL, Lu QH, Ji XP (2014) Rho-kinase inhibition is involved in the activation of PI3-kinase/Akt during ischemic-preconditioning-induced cardiomyocyte apoptosis. Int J Clin Exp Med 7(11):4107–4114 eCollection 2014Google Scholar
  67. 67.
    Zhang M, Sun D, Li S, Pan X, Zhang X, Zhu D, Li C, Zhang R, Gao E, Wang H (2015) Lin28a protects against cardiac ischaemia/reperfusion injury in diabetic mice through the insulin-PI3K-mTOR pathway. J Cell Mol Med 19(6):1174–1182Google Scholar
  68. 68.
    Zhou CC, Ge YZ, Yao WT, Wu R, Xin H, Lu TZ, Li MH, Song KW, Wang M, Zhu YP, Zhu M, Geng LG, Gao XF, Zhou LH, Zhang SL, Zhu JG, Jia RP (2017) Limited clinical utility of remote ischemic conditioning in renal transplantation: a meta-analysis of randomized controlled trials. PLoS One 12(1):e0170729Google Scholar
  69. 69.
    Zhu SB, Liu Y, Zhu Y, Yin GL, Wang RP, Zhang Y, Zhu J, Jiang W (2013) Remote preconditioning, perconditioning, and postconditioning: a comparative study of their cardio-protective properties in rat models. Clinics (Sao Paulo) 68(2):263–268Google Scholar

Copyright information

© University of Navarra 2019

Authors and Affiliations

  • Sakshi Tyagi
    • 1
  • Nirmal Singh
    • 1
  • Jasleen kaur Virdi
    • 1
  • Amteshwar Singh Jaggi
    • 1
    Email author
  1. 1.Department of Pharmaceutical Sciences and Drug ResearchPunjabi UniversityPatialaIndia

Personalised recommendations