Advertisement

Journal of Physiology and Biochemistry

, Volume 74, Issue 3, pp 431–439 | Cite as

Downregulation of lncRNA MALAT1 contributes to renal functional improvement after duodenal-jejunal bypass in a diabetic rat model

  • Dong Wu
  • Yu-gang Cheng
  • Xin Huang
  • Ming-wei Zhong
  • Shao-zhuang Liu
  • San-yuan Hu
Original Article
  • 51 Downloads

Abstract

Ameliorated renal function has been reported after bariatric surgery, but the mechanisms underlying this phenomenon are not well-studied. To investigate whether the long non-coding RNA (lncRNA) MALAT1 mediates the amelioration of diabetic nephropathy after duodenal-jejunal bypass (DJB) surgery, rats were assigned randomly into four groups: diabetic (DM) group, DM with DJB surgery group, DM with sham surgery group, and healthy control group. Food intake, body weight, oral glucose tolerance test (OGTT), urine albumin excretion rate (UAER), and glomerular filtration rate (GFR) were measured and histological examination of renal sections was performed. For in vitro study, HK-2 cells were cultured under various glucose concentrations following MALAT1 siRNA transfection. Expression levels of MALAT1, SAA3, IL-6, and TNF-α in rat renal tissues or HK-2 cell lines were evaluated by qRT-PCR and/or ELISA. Results showed DJB surgery improved the renal function of diabetic rats, as indicated by ameliorated UAER and GFR and attenuated glomerular hypertrophy. Expression of MALAT1 and its downstream target SAA3 was significantly downregulated in renal tissues after DJB, which in turn decreased the expression of the pro-inflammatory cytokines IL-6 and TNF-α. Knockdown of MALAT1 in HK-2 cell lines further confirmed that expression levels of SAA3, IL-6, and TNF-α were regulated by MALAT1 under both low- and high-glucose conditions. Our findings suggest that MALAT1 is implicated in the improvement of renal function after DJB through regulation of its downstream targets SAA3, IL-6, and TNF-α.

Keywords

Diabetes mellitus Duodenal-jejunal bypass Long non-coding RNA MALAT1 Renal function 

Notes

Funding

This study was supported by grants from the National Natural Science Foundation of China (grant No. 81600059, 81471019/H0712), the Natural Science Foundation of Shandong Province (grant No. ZR2014HQ004), and the Fundamental Research Funds of Shandong University (grant No. 2014QLKY22).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 2.
    Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, ... & Agyemang C (2017) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390:2627–2642Google Scholar
  2. 3.
    Albersen M, Lin G, Fandel TM, Zhang H, Qiu X, Lin CS, Lue TF (2011) Functional, metabolic, and morphologic characteristics of a novel rat model of type 2 diabetes-associated erectile dysfunction. Urology 78:471–476CrossRefGoogle Scholar
  3. 4.
    Ashrafian H, Bueter M, Ahmed K, Suliman A, Bloom SR, Darzi A, Athanasiou T (2010) Metabolic surgery: an evolution through bariatric animal models. Obes Rev 11:907–920CrossRefPubMedGoogle Scholar
  4. 5.
    Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307CrossRefPubMedPubMedCentralGoogle Scholar
  5. 6.
    Bray GA, Fruhbeck G, Ryan DH, Wilding JP (2016) Management of obesity. Lancet 387:1947–1956CrossRefPubMedGoogle Scholar
  6. 7.
    Camara NO, Iseki K, Kramer H, Liu ZH, Sharma K (2017) Kidney disease and obesity: epidemiology, mechanisms and treatment. Nat Rev Nephrol 13:181–190CrossRefPubMedGoogle Scholar
  7. 8.
    Denby L, Baker AH (2016) Targeting non-coding RNA for the therapy of renal disease. Curr Opin Pharmacol 27:70–77CrossRefPubMedGoogle Scholar
  8. 9.
    Elmarakby AA, Abdelsayed R, Yao LJ, Mozaffari MS (2010) Inflammatory cytokines as predictive markers for early detection and progression of diabetic nephropathy. EPMA J 1:117–129CrossRefPubMedPubMedCentralGoogle Scholar
  9. 10.
    Feigerlova E, Battaglia-Hsu SF (2017) IL-6 signaling in diabetic nephropathy: from pathophysiology to therapeutic perspectives. Cytokine Growth Factor Rev 37:57–65CrossRefPubMedGoogle Scholar
  10. 11.
    Fruhbeck G (2015) Bariatric and metabolic surgery: a shift in eligibility and success criteria. Nat Rev Endocrinol 11:465–477CrossRefPubMedGoogle Scholar
  11. 12.
    Fruhbeck G, Gomez-Ambrosi J (2001) Rationale for the existence of additional adipostatic hormones. FASEB J 15:1996–2006CrossRefPubMedGoogle Scholar
  12. 13.
    Geloneze B, Geloneze SR, Chaim E, Hirsch FF, Felici AC, Lambert G, Tambascia MA, Pareja JC (2012) Metabolic surgery for non-obese type 2 diabetes: incretins, adipocytokines, and insulin secretion/resistance changes in a 1-year interventional clinical controlled study. Ann Surg 256:72–78CrossRefPubMedGoogle Scholar
  13. 14.
    Guo W, Han H, Wang Y, Zhang X, Liu S, Zhang G, Hu S (2016) miR-200a regulates Rheb-mediated amelioration of insulin resistance after duodenal-jejunal bypass. Int J Obes 40:1222–1232CrossRefGoogle Scholar
  14. 15.
    Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, Revenko A, Arun G, Stentrup M, Gross M, Zornig M, MacLeod AR, Spector DL, Diederichs S (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73:1180–1189CrossRefPubMedGoogle Scholar
  15. 16.
    Heneghan HM, Cetin D, Navaneethan SD, Orzech N, Brethauer SA, Schauer PR (2013) Effects of bariatric surgery on diabetic nephropathy after 5 years of follow-up. Surg Obes Relat Dis 9:7–14CrossRefPubMedGoogle Scholar
  16. 17.
    Kitada K, Nakano D, Ohsaki H, Hitomi H, Minamino T, Yatabe J, Felder RA, Mori H, Masaki T, Kobori H, Nishiyama A (2014) Hyperglycemia causes cellular senescence via a SGLT2- and p21-dependent pathway in proximal tubules in the early stage of diabetic nephropathy. J Diabetes Complicat 28:604–611CrossRefPubMedPubMedCentralGoogle Scholar
  17. 18.
    Liu S, Zhang G, Wang L, Sun D, Chen W, Yan Z, Sun Y, Hu S (2012) The entire small intestine mediates the changes in glucose homeostasis after intestinal surgery in Goto-Kakizaki rats. Ann Surg 256:1049–1058CrossRefPubMedGoogle Scholar
  18. 19.
    Liu JY, Yao J, Li XM, Song YC, Wang XQ, Li YJ, Yan B, Jiang Q (2014) Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis 5:e1506CrossRefPubMedPubMedCentralGoogle Scholar
  19. 20.
    Lorenzen JM, Thum T (2016) Long noncoding RNAs in kidney and cardiovascular diseases. Nat Rev Nephrol 12:360–373CrossRefPubMedGoogle Scholar
  20. 21.
    Lytvyn Y, Bjornstad P, Pun N, Cherney DZ (2016) New and old agents in the management of diabetic nephropathy. Curr Opin Nephrol Hypertens 25:232–239CrossRefPubMedPubMedCentralGoogle Scholar
  21. 22.
    Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159CrossRefPubMedGoogle Scholar
  22. 23.
    Moncada R, Landecho MF, Fruhbeck G (2016) Metabolic surgery enters the T2DM Treatment Algorithm. Trends Endocrinol Metab 27:678–680CrossRefPubMedGoogle Scholar
  23. 24.
    Navarro-Gonzalez JF, Mora-Fernandez C, Muros DFM, Garcia-Perez J (2011) Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 7:327–340CrossRefPubMedGoogle Scholar
  24. 25.
    NCD Risk Factor Collaboration (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387:1513–1530Google Scholar
  25. 26.
    Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S (2015) Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med 19:1418–1425CrossRefPubMedPubMedCentralGoogle Scholar
  26. 27.
    Rubino F (2008) Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care 31(Suppl 2):S290–S296CrossRefPubMedGoogle Scholar
  27. 28.
    Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, Aminian A, Pothier CE, Kim ES, Nissen SE, Kashyap SR (2014) Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med 370:2002–2013CrossRefPubMedPubMedCentralGoogle Scholar
  28. 29.
    Shimizu I, Yoshida Y, Suda M, Minamino T (2014) DNA damage response and metabolic disease. Cell Metab 20:967–977CrossRefPubMedGoogle Scholar
  29. 30.
    Sjostrom L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, Anveden A, Bouchard C, Carlsson B, Karason K, Lonroth H, Naslund I, Sjostrom E, Taube M, Wedel H, Svensson PA, Sjoholm K, Carlsson LM (2014) Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 311:2297–2304CrossRefPubMedGoogle Scholar
  30. 31.
    Skovso S (2014) Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig 5:349–358CrossRefPubMedPubMedCentralGoogle Scholar
  31. 32.
    Song P, Yang S, Xiao L, Xu X, Tang C, Yang Y, Ma M, Zhu J, Liu F, Sun L (2014, 2014) PKCdelta promotes high glucose induced renal tubular oxidative damage via regulating activation and translocation of p66Shc. Oxidative Med Cell Longev:746531Google Scholar
  32. 33.
    Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320CrossRefPubMedGoogle Scholar
  33. 34.
    Upala S, Wijarnpreecha K, Congrete S, Rattanawong P, Sanguankeo A (2016) Bariatric surgery reduces urinary albumin excretion in diabetic nephropathy: a systematic review and meta-analysis. Surg Obes Relat Dis 12:1037–1044CrossRefPubMedGoogle Scholar
  34. 35.
    Wang T, Zhang P, Zhang X, Cao T, Zheng C, Yu B (2017) Duodenal-jejunal bypass attenuates progressive failure of pancreatic islets in streptozotocin-induced diabetic rats. Surg Obes Relat Dis 13:250–260CrossRefPubMedGoogle Scholar
  35. 36.
    Yan B, Tao ZF, Li XM, Zhang H, Yao J, Jiang Q (2014) Aberrant expression of long noncoding RNAs in early diabetic retinopathy. Invest Ophthalmol Vis Sci 55:941–951CrossRefPubMedGoogle Scholar
  36. 37.
    Zhang M, Lv XY, Li J, Xu ZG, Chen L (2008) The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res 2008:704045CrossRefPubMedGoogle Scholar
  37. 38.
    Zhang B, Arun G, Mao YS, Lazar Z, Hung G, Bhattacharjee G, Xiao X, Booth CJ, Wu J, Zhang C, Spector DL (2012) The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2:111–123CrossRefPubMedPubMedCentralGoogle Scholar
  38. 39.
    Zhang R, Xia Y, Wang Z, Zheng J, Chen Y, Li X, Wang Y, Ming H (2017) Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun 490:406–414CrossRefPubMedGoogle Scholar
  39. 40.
    Zhang X, Liu S, Zhang G, Zhong M, Liu T, Wei M, Wu D, Huang X, Cheng Y, Wu Q, Hu S (2017) Bariatric surgery ameliorates diabetic cardiac dysfunction by inhibiting ER stress in a diabetic rat model. Obes Surg 27:1324–1334CrossRefPubMedGoogle Scholar

Copyright information

© University of Navarra 2018

Authors and Affiliations

  • Dong Wu
    • 1
  • Yu-gang Cheng
    • 1
  • Xin Huang
    • 1
  • Ming-wei Zhong
    • 1
  • Shao-zhuang Liu
    • 1
  • San-yuan Hu
    • 1
  1. 1.Department of General SurgeryQilu Hospital of Shandong UniversityJinanPeople’s Republic of China

Personalised recommendations