Advertisement

Adaptive sliding-mode observer for second order discrete-time MIMO nonlinear systems based on recurrent neural-networks

  • Iván SalgadoEmail author
  • Hafiz Ahmed
  • Oscar Camacho
  • Isaac Chairez
Original Article
  • 33 Downloads

Abstract

This manuscript introduces a novel methodology to solve the state estimation of discrete-time multi-input multi-output (MIMO) nonlinear systems with uncertain dynamics. The mathematical model of the nonlinear systems considered in this paper satisfies the usual Lagrangian structure that characterizes many mechanical, electrical or electromechanical systems. A recurrent neural network (RNN) estimates the uncertain dynamics of the MIMO system with an updating law based on a particular variant of the discrete-time version of the super-twisting algorithm (DSTA). A Lyapunov stability analysis defines the convergence zone for the state estimation error throughout the solution of a matrix inequality. The convergence zone for the estimation is smaller when the DSTA and the RNN work together in an observer. Numerical examples demonstrate how the adaptive observer reduces the zone of convergence and the oscillations in the steady state compared with a discrete version of the STA with additional linear correcting terms. An experimental implementation shows how the observer estimates the unknown states of a Van Der Pol Oscillator. A comparison against some variations of the DSTA justifies the advantages of the mixed DSTA-RNN observer.

Keywords

State estimation Lyapunov theory Sliding modes Recurrent neural networks Discrete-time super twisting algorithm Second order systems 

Notes

Acknowledgements

The authors thank the economical support provided by Instituto Politécnico Nacional through the Research Grants labeled SIP-20181009, SIP-2018043 and SIP-20180330.

References

  1. 1.
    Oveisi A, Jeronimo MB, Nestorovic T (2018) Nonlinear observer-based recurrent wavelet neuro-controller in disturbance rejection control of flexible structures. Eng Appl Artif Intell 69:50–64CrossRefGoogle Scholar
  2. 2.
    Liu X, Yang C, Chen Z, Wang M, Su C-Y (2018) Neuro-adaptive observer based control of flexible joint robot. Neurocomputing 275:73–82CrossRefGoogle Scholar
  3. 3.
    Khalil H (2002) Nonlinear systems. Prentice Hall, Upper Saddle RiverzbMATHGoogle Scholar
  4. 4.
    Ortega R, Praly L, Aranovskiy S, Yi B, Zhang W (2018) On dynamic regressor extension and mixing parameter estimators: two luenberger observers interpretations. Automatica.  https://doi.org/10.1016/j.automatica.2018.06.011 zbMATHGoogle Scholar
  5. 5.
    Faria C (2019) Sensor fusion and rotational motion reconstruction via nonlinear state-observers. Mech Syst Signal Process 114:571–578CrossRefGoogle Scholar
  6. 6.
    Ardabili SF, Najafi B, Shamshirband S, Bidgoli BM, Deo RC, wing Chau K (2018) Computational intelligence approach for modeling hydrogen production: a review. Eng Appl Comput Fluid Mech 12(1):438–458Google Scholar
  7. 7.
    Spurgeon S (2008) Sliding mode observers: a survey. Int J Syst Sci 39(8):751–764MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Palli G, Strano S, Terzo M (2018) Sliding-mode observers for state and disturbance estimation in electro-hydraulic systems. Control Eng Pract 74:58–70CrossRefGoogle Scholar
  9. 9.
    Boiko I, Fridman L, Pisano A, Usai E (2007) Analysis of chattering in systems with second-order sliding modes. IEEE Trans Autom Control 52(11):2085–2102MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Levant A (1993) Sliding order and sliding accuracy in sliding mode control. Int J Control 58(6):1247–1263MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Levant A (2007) Principles of 2-sliding mode design. Automatica 43(4):576–586MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Levant A (1998) Robust exact differentiation via sliding mode tecnique. Automatica 34(3):379–384MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Davila J, Fridman L, Levant A (2005) Second-order sliding-mode observer for mechanical systems. IEEE Trans Autom Control 50(11):1785–1789MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Davila J, Fridman L, Poznyak A (2006) Observation and identification of mechanical systems via second-order sliding modes. Int J Control 79(10):1251–1262MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gonzlez T, Moreno J, Fridman L (2012) Variable gain super-twisting sliding mode control. IEEE Trans Autom Control 57(8):2100–2105MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tseng C-S, Chen B-S (2017) Fuzzy control for uncertain vehicle active suspension systems via dynamic sliding-mode approach. IEEE Trans Syst Man Cybern Syst 47(1):24–32CrossRefGoogle Scholar
  17. 17.
    Levant A (2007) Finite differences in homogeneous discontinuous control. IEEE Trans Autom Control 52(7):1208–1217MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Salgado I, Kamal S, Bandyopadhyay B, Chairez I, Fridman L (2016) Control of discrete time systems based on recurrent super-twisting-like algorithm. ISA Trans 64:47–55CrossRefGoogle Scholar
  19. 19.
    Yan Y, Galias Z, Yu X, Sun C (2016) Eulers discretization effect on a twisting algorithm based sliding mode control. Automatica 68:203–208MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sarpturk SZ, Istefanopulos Y, Kaynak O (1987) On the stability of discrete-time sliding mode control systems. IEEE Trans Autom Control 32(10):930–932CrossRefzbMATHGoogle Scholar
  21. 21.
    Govindaswamy S, Floquet T, Spurgeon S (2008) On output sampling based sliding mode control for discrete time. In: Proceedings of the 47th IEEE conference on decision and control, pp 2190–2195Google Scholar
  22. 22.
    Sira-Ramirez H (1991) Nonlinear discrete variable structure systems in quasi-sliding mode. Int J Control 54(5):1171–1187MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Priya PL, Bandyopadhyay B (2017) Discrete time sliding mode control for uncertain delta operator systems with infrequent output measurements. Eur J Control 33:52–59MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Liu H, Pan Y, Li S, Chen Y (2018) Synchronization for fractional-order neural networks with full/under-actuation using fractional-order sliding mode control. Int J Mach Learn Cybern 9(7):1219–1232.  https://doi.org/10.1007/s13042-017-0646-z CrossRefGoogle Scholar
  25. 25.
    Sastry S, Bodson M (1989) Robustness. In: Kailath T (ed) Adaptive control. Stability, convergence and robustness. Prentice Hall, Upper Saddle RiverGoogle Scholar
  26. 26.
    Resendiz J, Yu W, Fridman L (2008) Two-stage neural observer for mechanical systems. IEEE Trans Circuits Syst 55(10):1076–1080CrossRefGoogle Scholar
  27. 27.
    Gholami V, Chau K, Fadaee F, Torkaman J, Ghaffari A (2015) Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. J Hydrol 529:1060–1069CrossRefGoogle Scholar
  28. 28.
    Kazemi S M R, Bidgoli B M, Shamshirband S, Karimi S M, Ghorbani M A, wing Chau K, Pour R K (2018) Novel genetic-based negative correlation learning for estimating soil temperature. Eng Appl Comput Fluid Mech 12(1):506–516Google Scholar
  29. 29.
    Chen L, Liu M, Huang X, Fu S, Qiu J (2018) Adaptive fuzzy sliding mode control for network-based nonlinear systems with actuator failures. IEEE Trans Fuzzy Syst 26(3):1311–1323CrossRefGoogle Scholar
  30. 30.
    Taormina R, Chau K-W, Sivakumar B (2015) Neural network river forecasting through baseflow separation and binary-coded swarm optimization. J Hydrol 529:1788–1797CrossRefGoogle Scholar
  31. 31.
    Tseng C-S, Chen B-S (2001) Multiobjective PID control design in uncertain robotic systems using neural network elimination scheme. IEEE Trans Syst Man Cybern Syst 31(6):632–644CrossRefGoogle Scholar
  32. 32.
    Poznyak A, Sánchez E, Wen Y (2001) Differential neural networks for robust nonlinear control (identification, state estimation and trajectory tracking). World Scientific Press, SingaporeCrossRefzbMATHGoogle Scholar
  33. 33.
    Haykin S (1999) Neural networks, comprehensive foundation. Prentice Hall, Upper Saddle RiverzbMATHGoogle Scholar
  34. 34.
    Sanchez N, Alanis Y, Loukianov A (2008) Discrete-time, high order neural control: trained with Kalman filtering. Springer, LondonCrossRefzbMATHGoogle Scholar
  35. 35.
    Salgado I, Chairez I (2009) Discrete time recurrent neural network observer. In: 2009 International joint conference on neural networks, no. 909–916Google Scholar
  36. 36.
    Chairez I, Poznyak A, Poznyak T (2006) New sliding-mode learning law for dynamic neural network observer. IEEE Trans Circuits Syst II Express Briefs 53(12):1338–1342CrossRefzbMATHGoogle Scholar
  37. 37.
    Chairez I, Poznyak A, Poznyak T (2008) High order dynamic neuro observer: application for ozone generator. In: International workshop on variable structure systems (VSS’08)Google Scholar
  38. 38.
    Wen S, Chen M, Zeng Z, Huang T, Li C (2017) Adaptive neural-fuzzy sliding-mode fault-tolerant control for uncertain nonlinear systems. IEEE Trans Syst Man Cybern Syst PP(99):1–11CrossRefGoogle Scholar
  39. 39.
    Yildiz Y, Sabanovic A, Khalid A (2007) Sliding mode neuro-controller for uncertain systems. IEEE Trans Ind Electron 54(3):1676–1685CrossRefGoogle Scholar
  40. 40.
    Fajani MR, Izadbakhsh A, Ghazvinipour AH (2018) Recurrent neural network based second order sliding mode control of redundant robot manipulators. In: 2008 IEEE international conference on industrial technology (ICIT)Google Scholar
  41. 41.
    Moreno A, Osorio M (2012) Strict Lyapunov funtions for the super-twisting algorithm. IEEE Trans Autom Control 57(4):1035–1040CrossRefzbMATHGoogle Scholar
  42. 42.
    Atassi AN, Khalil H (2000) Separation results for the stabilization of nonlinear systems using different high-gain observer design. Syst Control Lett 39:183–191MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Cotter NE (1990) The Stone–Weierstrass theorem and its application to neural networks. IEEE Trans Nueral Netw 1(4):290–295MathSciNetCrossRefGoogle Scholar
  44. 44.
    Chairez I (2009) Wavelet differential neural network observer. IEEE Trans Neural Netw 20(9):1439–1449CrossRefGoogle Scholar
  45. 45.
    Salgado I, Kamal S, Chairez I, Bandyopadhyay B, Fridman L (2011) Super-twisting-like algorithm in discrete time nonlinear systems. In: Proceedings of the 2011 international conference on advanced mechatronic systemsGoogle Scholar
  46. 46.
    Poznyak A (2008) Advanced mathematical tools for automatic control engineers, vol 1. Deterministic systems. Elsevier Science, New YorkGoogle Scholar
  47. 47.
    Ahmed H, Salgado I, Ríos H (2018) Robust synchronization of master-slave chaotic systems using approximate model: an experimental study. ISA trans 73:141–146.  https://doi.org/10.1016/j.isatra.2018.01.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UPIBI-Instituto Politécnico NacionalMexico CityMexico
  2. 2.CIDETEC-Instituto Politécnico NacionalMexico CityMexico
  3. 3.Coventry UniversityCoventryUK

Personalised recommendations