Advertisement

Big data aggregation in the case of heterogeneity: a feasibility study for digital health

  • Alex Adim Obinikpo
  • Burak KantarciEmail author
Original Article
  • 52 Downloads

Abstract

In big data applications, an important factor that may affect the value of the acquired data is the missing data, which arises when data is lost either during acquisition or during storage. The former can be a result of faulty acquisition devices or non responsive sensors whereas the latter can occur as a result of hardware failures at the storage units. In this paper, we consider human activity recognition as a case study of a typical machine learning application on big datasets. We conduct a comprehensive feasibility study on the fusion of sensory data that is acquired from heterogeneous sources. We present insights on the aggregation of heterogeneous datasets with minimal missing data values for future use. Our experiments on the accuracy, F-1 score, and PPV of various key machine learning algorithms show that sensory data acquired by wearables are less vulnerable to missing data and smaller training sets whereas smart portable devices require larger training sets to reduce the impacts of possibly missing data.

Keywords

Dedicated sensors Non-dedicated sensors Aggregation 

Notes

Acknowledgements

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) under RGPIN/2017-04032.

References

  1. 1.
    Suciu G, Suciu V, Halunga S, Fratu O (2015) Big data, internet of things and cloud convergence for e-Health applications. Adv Intell Syst Comput.  https://doi.org/10.1007/978-3-319-16486-1fng15 Google Scholar
  2. 2.
    Paul A, Rho S (2016) Probabilistic model for M2M in IoT networking and communication. Telecommun Syst 62(1):59–66CrossRefGoogle Scholar
  3. 3.
    Liu W, Park EK (2014) Big data as an e-Health service. In: 2014 international conference on computing, networking and communications ICNC 2014.  https://doi.org/10.1109/ICCNC.2014.6785471
  4. 4.
    Wu J, Guo S, Huang H, Liu W, Xiang Y (2018) Information and communications technologies for sustainable development goals: state-of-the-art, needs and perspectives. IEEE Commun Surv Tutor 20:2389–2406CrossRefGoogle Scholar
  5. 5.
    Diaz M, Juan G, Lucas O, Ryuga A (2012) Big data on the internet of things: an example for the e-Health. In: Proceedings—6th international conference on innovative mobile and internet services in ubiquitous computing, IMIS 2012.  https://doi.org/10.1109/IMIS.2012.198
  6. 6.
    Naversnik K, Mrhar A (2013) Cost-effectiveness of a Novele-Health depression service. Telemed e-Health.  https://doi.org/10.1089/tmj.2012.0081 Google Scholar
  7. 7.
    Thuemmler C, Bai C (eds) (2017) Health 4.0: how virtualization and big data are revolutionizing healthcare. Springer, New York, NYGoogle Scholar
  8. 8.
    Shin D, Sahama T, Gajanayake R (2013) Secured e-health data retrieval in DaaS and Big Data. In: 2013 IEEE 15th international conference on e-Health networking, applications and services, Healthcom 2013.  https://doi.org/10.1109/HealthCom.2013.6720677
  9. 9.
    Roy S, Conti M, Setia S, Jajodia S (2014) Secure data aggregation in wireless sensor networks: filtering out the attacker’s impact. IEEE Trans Inf Forensics Secur.  https://doi.org/10.1109/TIFS.2014.2307197 Google Scholar
  10. 10.
    Daniel A, Subburathinam K, Paul A, Rajkumar N, Rho S (2017) Big autonomous vehicular data classifications: towards procuring intelligence in ITS. Vehic Commun 9:306–312CrossRefGoogle Scholar
  11. 11.
    Quoc Viet Hung N, Tam NT, Tran LN, Aberer K (2013) An evaluation of aggregation techniques in crowd sourcing. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics).  https://doi.org/10.1007/978-3-642-41154-0fng1
  12. 12.
    Paul A (2014) Real-time power management for embedded M2M using intelligent learning methods. ACM Trans Embed Comput Syst 13(5 s):148Google Scholar
  13. 13.
    Chen MY, Chen BT (2014) Online fuzzy time series analysis based on entropy discretization and a Fast Fourier Transform. Appl Soft Comput.  https://doi.org/10.1016/j.asoc.2013.07.024 Google Scholar
  14. 14.
    Perkins NJ, Cole SR, Harel O, Tchetgen Tchetgen EJ, Sun B, Mitchell EM, Schisterman EF (2017) Principled approaches to missing data in epidemiologic studies. Am J Epidemiol.  https://doi.org/10.1093/aje/kwx348 Google Scholar
  15. 15.
    Beaulieu-Jones BK, Moore JH, CONSORTIUM T.P.R.O.A.A.C.T. (2017) Missing data imputation in the electronic health record using deeply learned autoencoders. Pacific symposium on biocomputing.  https://doi.org/10.1142/9789813207813$4ng0021
  16. 16.
    Lara OD, Labrador MA (2013) A survey on human activity recognition using wearable sensors. IEEE Commun Surv Tutor 15(3):1192–1209CrossRefGoogle Scholar
  17. 17.
    Su X, Tong H, Ji P (2014) Activity recognition with smartphone sensors. Tsinghua Sci Technol.  https://doi.org/10.1109/TST.2014.6838194 Google Scholar
  18. 18.
    Davila J, Cretu AM, Zaremba M (2017) Wearable sensor data classification for human activity recognition based on an iterative learning framework. Sensors.  https://doi.org/10.3390/s17061287 Google Scholar
  19. 19.
    Hassanalieragh M, Page A, Soyata T, Sharma G, Aktas M, Mateos G, Kantarci B, Andreescu S (2015) Health monitoring and management using Internet-of-Things (IoT) sensing with cloud-based processing: opportunities and challenges. In: Proceedings—2015 IEEE international conference on services computing, SCC 2015.  https://doi.org/10.1109/SCC.2015.47
  20. 20.
    Lupton D (2013) The commodification of patient opinion: the digital patient experience economy in the age of big data. Sociol Health Illness.  https://doi.org/10.1111/1467-9566.12109 Google Scholar
  21. 21.
    Springman MK, Bermeo Y, Limper HM, Tothy AS (2016) Developing an analytic approach to understanding the patient care experience. J Patient Exp.  https://doi.org/10.1177/2374373516685956 Google Scholar
  22. 22.
    Delen D, Fuller C (2013) An analytic approach to understanding and predicting healthcare coverage. Stud Health Technol Inf.  https://doi.org/10.3233/978-1-61499-276-9-198 Google Scholar
  23. 23.
    Brownstein JS, Freifeld CC, Madoff LC (2009) Digital disease detection harnessing the web for public health surveillance. N Engl J Med.  https://doi.org/10.1056/NEJMp0900702 Google Scholar
  24. 24.
    Barrett Ma, Humblet O, Hiatt RA, Adler NE (2013) Big data and disease prevention: from quantified self to quantified communities. Big Data.  https://doi.org/10.1089/big.2013.0027 Google Scholar
  25. 25.
    Zhang M, Sawchuk AA (2013) Human daily activity recognition with sparse representation using wearable sensors. IEEE J Biomed Health Inform.  https://doi.org/10.1109/JBHI.2013.2253613 Google Scholar
  26. 26.
    Din S, Paul A (2019) Smart health monitoring and management system: toward autonomous wearable sensing for internet of things using big data analytics. Future Gener Comput Syst 91:611–619CrossRefGoogle Scholar
  27. 27.
    Paul A, Ahmad A, Rathore MM, Jabbar S (2016) Smartbuddy: defining human behaviors using big data analytics in social internet of things. IEEE Wirel Commun 23(5):68–74CrossRefGoogle Scholar
  28. 28.
    Chernbumroong S, Cang S, Atkins A, Yu H (2013) Elderly activities recognition and classification for applications in assisted living. Expert Syst Appl 40(5):1662–1674CrossRefGoogle Scholar
  29. 29.
    Gjoreski H, Kozina S, Gams M, Lustrek M (2014) RAReFall—real-time activity recognition and fall detection system. In: Pervasive computing and communications workshops (PERCOM workshops), 2014 IEEE international conference on. IEEE, pp 145–147Google Scholar
  30. 30.
    Zhou B, Sundholm M, Cheng J, Cruz H, Lukowicz P (2017) Measuring muscle activities during gym exercises with textile pressure mapping sensors. Pervasive Mob Comput 38:331–345CrossRefGoogle Scholar
  31. 31.
    O’Donovan T, O’Donoghue J, Sreenan C, Sammon D, O’Reilly P, O’Connor K (2009) A context aware wireless body area network (BAN). Pervasive computing technologies for healthcare (2009) PervasiveHealth 2009. 3rd international conference onGoogle Scholar
  32. 32.
    Rutherford JJ (2010) Wearable technology. IEEE Eng Med Biol Mag.  https://doi.org/10.1109/MEMB.2010.936550 Google Scholar
  33. 33.
    Piwek L, Ellis DA, Andrews S, Joinson A (2016) The rise of consumer health wearables: promises and barriers. PLoS Med.  https://doi.org/10.1371/journal.pmed.1001953 Google Scholar
  34. 34.
    Cahyani NDW, Martini B, Choo KKR, Al-Azhar AMN (2017) Forensic data acquisition from cloud-of-things devices: windows smartphones as a case study. Concurr Comput.  https://doi.org/10.1002/cpe.3855 Google Scholar
  35. 35.
    Rehman M, Liew C, Wah T, Shuja J, Daghighi B (2015) Mining personal data using smartphones and wearable devices: a survey. Sensors.  https://doi.org/10.3390/s150204430 Google Scholar
  36. 36.
    Feng M, Fukuda Y, Mizuta M, Ozer E (2015) Citizen sensors for SHM: use of accelerometer data from smartphones. Sensors (Switzerland).  https://doi.org/10.3390/s150202980 Google Scholar
  37. 37.
    Habibzadeh H, Qin Z, Soyata T, Kantarci B (2017) Largescale distributed dedicated- and non-dedicated smart city sensing systems. IEEE Sens J 17(23):7649–7658.  https://doi.org/10.1109/JSEN.2017.2725638 CrossRefGoogle Scholar
  38. 38.
    Pouryazdan M, Kantarci B, Soyata T, Foschini L, Song H (2017) Quantifying user reputation scores, data trustworthiness, and user incentives in mobile crowdsensing. IEEE Access 5:1382–1397.  https://doi.org/10.1109/ACCESS.2017.2660461 CrossRefGoogle Scholar
  39. 39.
    Yang D, Xue G, Fang X, Tang J (2016) Incentive mechanisms for crowdsensing: crowdsourcing with smartphones. IEEE ACM Trans Netw 24(3):1732–1744.  https://doi.org/10.1109/TNET.2015.2421897 CrossRefGoogle Scholar
  40. 40.
    Predic B, Zhixian Y, Eberle J, Stojanovic D, Aberer K (2013) ExposureSense: integrating daily activities with air quality using mobile participatory sensing. In: 2013 IEEE international conference on pervasive computing and workshops C (PERCOM Workshops).  https://doi.org/10.1109/PerComW.2013.6529500
  41. 41.
    Obinikpo AA, Zhang Y, Song H, Luan TH, Kantarcih B (2017) Queuing algorithm for effective target coverage in mobile crowd sensing. IEEE Internet Things J.  https://doi.org/10.1109/JIOT.2017.2688366 Google Scholar
  42. 42.
    Kantarci B, Mouftah HT (2014) Trustworthy sensing for public safety in cloud-centric internet of things. IEEE Internet Things J 1(4):360–368CrossRefGoogle Scholar
  43. 43.
    Hao T, Xing G, Zhou G (2013) iSleep: unobtrusive sleep quality monitoring using smartphones. In: Proceedings of the 11th ACM conference on embedded networked sensor systems.  https://doi.org/10.1145/2517351.2517359
  44. 44.
    Linkov I, Massey O, Keisler J, Rusyn I, Hartung T (2015) From “weight of evidence” to quantitative data integration using multicriteria decision analysis and Bayesian methods. Altex.  https://doi.org/10.14573/altex.1412231 Google Scholar
  45. 45.
    Chen Y, Cook WD, Du J, Hu H, Zhu J (2015) Bounded and discrete data and Likert scales in data envelopment analysis: application to regional energy efficiency in China. Ann Oper Res.  https://doi.org/10.1007/s10479-015-1827-3 Google Scholar
  46. 46.
    Pargett M, Umulis DM (2013) Quantitative model analysis with diverse biological data: applications in developmental pattern formation. Methods.  https://doi.org/10.1016/j.ymeth.2013.03.024 Google Scholar
  47. 47.
    Vosloo J, Taylor-Powell E, Renner M, Research-part B, Reid S, Punch KF, O‘connor H, Gibson N, Miles MB, Huberman Ma, Saldana J, Mellish L, Morris S, Do M, Mcnair R, Taft A, Hegarty K, Lacey A, Luff D, Hunn A, Fox N, Hunn A, Free R, For D, Data Q, Miles A, Framework U, Framework U, Flick U, Data ACI (2014) Qualitative data analysis qualitative data. The SAGE handbook of qualitative data analysis.  https://doi.org/10.1136/ebnurs.2011.100352
  48. 48.
    Raghupathi W, Raghupathi V (2014) Big data analytics in healthcare: promise and potential. Health Inf Sci Syst.  https://doi.org/10.1186/2047-2501-2-3 zbMATHGoogle Scholar
  49. 49.
    Nakamura J (2005) Image sensors and signal processing for digital still cameras.  https://doi.org/10.1201/9781420026856
  50. 50.
    Bouveyron C, Brunet-Saumard C (2014) Model-based clustering of high-dimensional data: a review. Comput Stat Data Anal.  https://doi.org/10.1016/j.csda.2012.12.008 MathSciNetzbMATHGoogle Scholar
  51. 51.
    Tomasev N, Radovanovic M, Mladenic D, Ivanovic M (2014) The role of hubness in clustering high-dimensional data. IEEE Trans Knowl Data Eng.  https://doi.org/10.1109/TKDE.2013.25 Google Scholar
  52. 52.
    Graham JW (2012) Analysis of missing data. Miss Data.  https://doi.org/10.1007/978-1-4614-4018-5fng2 CrossRefzbMATHGoogle Scholar
  53. 53.
    Zhou P, Fan LW, Zhou DQ (2010) Data aggregation in constructing composite indicators: a perspective of information loss. Expert Syst Appl.  https://doi.org/10.1016/j.eswa.2009.05.039 Google Scholar
  54. 54.
    Ladra S, Torra V (2010) Information loss for synthetic data through fuzzy clustering. Int J Uncertain Fuzziness Knowl Based Syst.  https://doi.org/10.1142/S0218488510006362 Google Scholar
  55. 55.
    Hsieh TS, Noyes D, Liu H, Fiondella L (2015) Quantifying the impact of data loss incidents on publicly-traded organizations. In: 2015 IEEE international symposium on technologies for homeland security, HST 2015.  https://doi.org/10.1109/THS.2015.7225301
  56. 56.
    Obinikpo AA, Kantarci B (2017) Big sensed data meets deep learning for smarter health care in smart cities. J Sens Actuator Netw.  https://doi.org/10.3390/jsan6040026 Google Scholar
  57. 57.
    Neubeck L, Lowres N, Benjamin EJ, Freedman SB, Coorey G, Redfern J (2015) The mobile revolution using smartphone apps to prevent cardiovascular disease.  https://doi.org/10.1038/nrcardio.2015.34
  58. 58.
    Velasco E, Agheneza T, Denecke K, Kirchner G, Eckmanns T (2014) Social media and internet-based data in global systems for public health surveillance: a systematic review.  https://doi.org/10.1111/1468-0009.12038
  59. 59.
    Shwe HY, Jet TK, Chong PHJ (2016) An IoT-oriented data storage framework in smart city applications. In: 2016 international conference on information and communication technology convergence (ICTC), pp 106–108Google Scholar
  60. 60.
    Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, San Francisco, CaliforniaGoogle Scholar
  61. 61.
    Wu J, Guo S, Li J, Zeng D (2016) Big data meet green challenges: big data toward green applications. IEEE Syst J 10(3):888–900CrossRefGoogle Scholar
  62. 62.
    Chen CP, Zhang CyY (2014) Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inf Sci.  https://doi.org/10.1016/j.ins.2014.01.015 Google Scholar
  63. 63.
    Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning ICML 06.  https://doi.org/10.1145/1143844.1143865
  64. 64.
    Mesnil G, Dauphin Y, Glorot X, Rifai S, Bengio Y, Goodfellow I, Lavoie E, Muller X, Desjardins G, Warde-Farley D, Vincent P (2011) Unsupervised and transfer learning challenge: a deep learning approach. In: Proceedings of the 2011 international conference on unsupervised and transfer learning workshop, Vol 27, pp 97–111, JMLR. orgGoogle Scholar
  65. 65.
    Hahne F, Huber W, Gentleman R, Falcon S (2008) Unsupervised machine learning. Bioconduct Case Stud.  https://doi.org/10.1007/978-0-387-77240-0$4 CrossRefGoogle Scholar
  66. 66.
    Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics.  https://doi.org/10.1038/nrg3920
  67. 67.
    Grys BT, Lo DS, Sahin N, Kraus OZ, Morris Q, Boone C, Andrews BJ (2017) Machine learning and computer vision approaches for phenotypic profiling. J Cell Biol.  https://doi.org/10.1083/jcb.201610026 Google Scholar
  68. 68.
    Hijazi S, Page A, Kantarci B, Soyata T (2016) Machine learning in cardiac health monitoring and decision support. IEEE Comput Mag 49(11):38–48.  https://doi.org/10.1109/MC.2016.339 CrossRefGoogle Scholar
  69. 69.
    Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn.  https://doi.org/10.1023/A:1022627411411 zbMATHGoogle Scholar
  70. 70.
    Squares L, Vector S (2010) 4 variants of support vector machines. Advances.  https://doi.org/10.1007/978-1-84996-098-4 Google Scholar
  71. 71.
    Wang Z, Xue X (2014) Multi-class support vector machine. Support Vector Mach Appl.  https://doi.org/10.1007/978-3-319-02300-7$4ng2 Google Scholar
  72. 72.
    Hamedani K, Liu L, Atat R, Wu J, Yi Y (2018) Reservoir computing meets smart grids: attack detection using delayed feedback networks. IEEE Trans Ind Inf 14(2):734–743CrossRefGoogle Scholar
  73. 73.
    Murty MN, Raghava R (2016) Linear support vector machines. In: Support vector machines and perceptrons. Springer, Cham.  https://doi.org/10.1007/978-3-319-41063-0fng4 CrossRefGoogle Scholar
  74. 74.
    Paul S, Boutsidis C, Magdon-Ismail M, Drineas P (2013) Random projections for support vector machines. In: Proceedings of the sixteenth international conference on artificial intelligence and statistics.  https://doi.org/10.1145/2641760
  75. 75.
    Raghavendra S, Deka PC (2014) Support vector machine applications in the field of hydrology: a review.  https://doi.org/10.1016/j.asoc.2014.02.002
  76. 76.
    Fischetti M (2016) Fast training of support vector machines with Gaussian kernel. Discret Optim.  https://doi.org/10.1016/j.disopt.2015.03.002 MathSciNetzbMATHGoogle Scholar
  77. 77.
    Shinde A, Sahu A, Apley D, Runger G (2014) Preimages for variation patterns from kernel PCA and bagging. IIE Trans.  https://doi.org/10.1080/0740817X.2013.849836 Google Scholar
  78. 78.
    Breiman L (1996) Bagging predictors. Mach Learn.  https://doi.org/10.1007/BF00058655 zbMATHGoogle Scholar
  79. 79.
    Kozak K, Kozak M, Stapor K (2006) Weighted k-nearest-neighbor techniques for high throughput screening data. Int J Biomed Sci 1:155–160Google Scholar
  80. 80.
    Xu Y, Zhu Q, Fan Z, Qiu M, Chen Y, Liu H (2013) Coarse to fine K nearest neighbor classifier. Pattern Recogn Lett.  https://doi.org/10.1016/j.patrec.2013.01.028 Google Scholar
  81. 81.
    Yadav S, Kaur A, Bhauryal NS (2016) Resolving the celestial classification using fine k-NN classifier. In: 2016 4th international conference on parallel, distributed and grid computing, PDGC 2016.  https://doi.org/10.1109/PDGC.2016.7913215
  82. 82.
    Chavarriaga R, Sagha H, Calatroni A, Digumarti ST, Tröster G, Millan JDR, Roggen D (2013) The opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recogn Lett.  https://doi.org/10.1016/j.patrec.2012.12.014 Google Scholar
  83. 83.
    Stisen A, Blunck H, Bhattacharya S, Prentow TS, Kjaergaard MB, Dey A, Sonne T, Jensen MM (2015) Smart devices are different: assessing and mitigating-mobile sensing heterogeneities for activity recognition. In: Proceedings of the 13th ACM conference on embedded networked sensor systems—SenSys ’15.  https://doi.org/10.1145/2809695.2809718
  84. 84.
    Auria L, Moro RA (2008) Support vector machines (SVM) as a technique for solvency analysis. DIW Berlin German Institute for economic Research.  https://doi.org/10.2139/ssrn.1424949

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of OttawaOttawaCanada

Personalised recommendations