A novel framework based on biclustering for automatic epileptic seizure detection

  • Qin Lin
  • Shuqun Ye
  • Cuihong Wu
  • Wencheng Gu
  • Jiaqian Wang
  • Huai-Ling ZhangEmail author
  • Yun XueEmail author
Original Article


Automatic epileptic seizure detection based on electroencephalogram is crucial to epilepsy diagnosis and treatment. However, the large numbers of time series make it quite challenging to establish a high performance automatic detection method. Considering different physiological states of the brain could be characterized by distinct combinations or interactions of similar discontinuous local temporal patterns, a novel framework based on biclustering for automatic epileptic seizure detection is proposed in this paper. First, the CC algorithm is used to identify similar discontinuous local temporal patterns. Then, the bicluster membership matrix using a new similarity measurement is constructed to reduce the dimensionality. At last, the ELM classifier is adopted to discriminate between epileptic seizure and seizure-free EEG signals. With extensive comparative studies and evaluations on the publicly available Bonn epileptic EEG dataset, it indicates that the proposed framework could not only automatically detect or predict an epilepsy seizure with high performances with respect to accuracy, robustness and efficiency, but also implicitly provide valuable knowledge for studying the mechanisms of epilepsy.


Electroencephalogram (EEG) time series data Epilepsy seizures Biclustering Extreme learning machine(ELM) Feature extraction Unsupervised feature learning 



The authors thank gratefully for the colleagues who have been concerned with the work and have provided much more powerfully technical supports. This study was supported by the Science and Technology Project of Guangdong Province (No. 2016A010101020, 2016A010101022, 2016A010101021), the Science and Technology Project of Zhanjiang City (No.2016B01118), the Research Funds of Guangdong Medical University (No.M2015031, M2015029).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.


  1. 1.
    Fisher RS, Boas WVE, Blume W et al (2005) Response: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(10):1701–1702Google Scholar
  2. 2.
    WHO. Media Centre, Epilepsy, Fact Sheet. Accessed 8 Oct 2016
  3. 3.
    Ellis N, Upton D, Thompson P (2000) Epilepsy and the family: a review of current literature. Seizure J Br Epilepsy Assoc 9(1):22–30Google Scholar
  4. 4.
    Stam CJ, Pijn JPM, Suffczynski P et al (1999) Dynamics of the human alpha rhythm: evidence for non-linearity? Clin Neurophysiol 110(10):1801–1813Google Scholar
  5. 5.
    Zhao H, Guo X, Wang M et al (2015) Analyze EEG signals with extreme learning machine based on PMIS feature selection. Int J Mach Learn Cybern 1–7Google Scholar
  6. 6.
    Liu A, Hahn JS, Heldt GP et al (1992) Detection of neonatal seizures through computerized EEG analysis. Electroencephalogr Clin Neurophysiol 82(1):30–37Google Scholar
  7. 7.
    Alkan A, Kiymik MK (2007) Comparison of AR and Welch methods in epileptic seizure detection. J Med Syst 30(6):413–419Google Scholar
  8. 8.
    Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 123(1):69–87Google Scholar
  9. 9.
    Übeyli ED (2010) Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Systems Appl 37(2):985–992Google Scholar
  10. 10.
    Lehnertz K, Elger CE (1995) Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalogr Clin Neurophysiol 95(2):108–117Google Scholar
  11. 11.
    Song Y, Crowcroft J, Zhang J (2012) Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J Neurosci Methods 210(2):132–146Google Scholar
  12. 12.
    Pachori RB (2008) Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res Lett Signal Process 2008:5Google Scholar
  13. 13.
    Geva AB, Kerem DH (1998) Forecasting generalized epileptic seizures from the EEG signal by wavelet analysis and dynamic unsupervised fuzzy clustering. IEEE Trans Biomed Eng 45(10):1205–1216Google Scholar
  14. 14.
    Orhan U, Hekim M, Ozer M (2011) EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 38(10):13475–13481Google Scholar
  15. 15.
    Sommer D, Golz M (2001) Clustering of EEG-Segments Using Hierarchical Agglomerative Methods and Self-Organizing Maps. In: Proceedings of the 2001 International Conference on Artificial Neural Networks, Vienna, Austria, pp 642–649Google Scholar
  16. 16.
    Hsu WY (2012) Fuzzy Hopfield neural network clustering for single-trial motor imagery EEG classification. Expert Syst Appl Int J 39(1):1055–1061Google Scholar
  17. 17.
    Zandi AS, Tafreshi R, Javidan M et al (2013) Predicting epileptic seizures in scalp EEG based on a variational bayesian Gaussian mixture model of zero-crossing intervals. IEEE Trans Biomed Eng 60(5):1401–1413Google Scholar
  18. 18.
    Cheng Y, Church GM (2000) Biclustering of expression data. In: Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, San Diego, La Jolla, California, USA, pp. 93–103Google Scholar
  19. 19.
    Chen HC, Zou W, Lu TP et al (2014) A composite model for subgroup identification and prediction via bicluster analysis. Plos One 9(10):e111318Google Scholar
  20. 20.
    Carreiro AV, Anunciação O, Carriço JA et al (2011) Prognostic prediction through biclustering-based classification of clinical gene expression time series. J Integr Bioinform 8(3):175–175Google Scholar
  21. 21.
    Asgarian N, Greiner R (2006) Using rank-1 biclusters to classify microarray data. Department of Computing Science, University of Alberta, Edmonton, pp 1–10Google Scholar
  22. 22.
    Busygin S, Boyko N, Pardalos PM et al (2007) Biclustering EEG data from epileptic patients treated with vagus nerve stimulation. Data Min Syst Anal Optim Biomed 953(1):220–231Google Scholar
  23. 23.
    Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501Google Scholar
  24. 24.
    Hartigan JA (1972) Direct Clustering of a Data Matrix. J Am Stat Assoc 67(337):123–129Google Scholar
  25. 25.
    Bendor A, Chor B, Karp R et al (2003) Discovering local structure in gene expression data: the order-preserving submatrix problem. In: Proceedings of the 6th Annual International Conference on Computational Biology, Washington, DC, USA, vol. 10, no. 3–4, pp. 49–57Google Scholar
  26. 26.
    Lazzeroni L, Owen A (2002) Plaid models for gene expression data. Stat Sin 12(1):61–86MathSciNetzbMATHGoogle Scholar
  27. 27.
    de Castro PAD, de França FO, Ferreira HM et al (2007) Applying biclustering to text mining: an immune-inspired approach. Artif Immune Syst 83–94Google Scholar
  28. 28.
    Wang B, Miao Y, Zhao H et al (2016) A biclustering-based method for market segmentation using customer pain points. Eng Appl Artif Intell 47:101–109Google Scholar
  29. 29.
    Inbarani H, Thangavel K (2010) A robust biclustering approach for effective web personalization. Visual analytics and interactive technologies: data, text and web mining applications, pp 186–202Google Scholar
  30. 30.
    Xue Y, Liu Z, Luo J et al (2015) Stock market trading rules discovery based on biclustering method. Math Probl Eng 2015(1):1–13Google Scholar
  31. 31.
    Symeonidis P, Nanopoulos A, Papadopoulos AN et al (2008) Nearest-biclusters collaborative filtering based on constant and coherent values. Inf Retr 11(1):51–75Google Scholar
  32. 32.
    Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinform 1(1):24–45Google Scholar
  33. 33.
    Prelić A, Bleuler S, Zimmermann P et al (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9):1122–1129Google Scholar
  34. 34.
    Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(Suppl 1):S136–S144Google Scholar
  35. 35.
    Kumar U, Raja SK, Mukhopadhyay C et al (2011) Hybrid Bayesian classifier for improved classification accuracy. IEEE Geosci Remote Sens Lett 8(3):474–477Google Scholar
  36. 36.
    Zhang GP (2000) Neural networks for classification: a survey. IEEE Trans Syst Man Cybern Part C (Appl Rev) 30(4):451–462Google Scholar
  37. 37.
    Kumar Y, Dewal ML, Anand RS (2014) Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 133(8):271–279Google Scholar
  38. 38.
    Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. Informatica 31(3):249–268MathSciNetzbMATHGoogle Scholar
  39. 39.
    Wang XZ, Chen AX, Feng HM (2011) Upper integral network with extreme learning mechanism. Neurocomputing 74(16):2520–2525Google Scholar
  40. 40.
    Yuan Q, Zhou W, Li S et al (2011) Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res 96(1–2):29–38Google Scholar
  41. 41.
    Andrzejak RG, Lehnertz K, Mormann F et al (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64(6):0619071–0619078Google Scholar
  42. 42.
    Jahankhani P, Kodogiannis V, Revett K (2006) EEG Signal Classification Using Wavelet Feature Extraction and Neural Networks. IEEE Symposium on John Vincent Atanasoff International Modern Computing, Sofia, pp 120–124Google Scholar
  43. 43.
    Polat K, Güneş S (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 187(2):1017–1026MathSciNetzbMATHGoogle Scholar
  44. 44.
    Guo L, Rivero D, Seoane JA et al (2009) Classification of EEG signals using relative wavelet energy and artificial neural networks. In: Proceedings of the 2nd Genetic and Evolutionary Computation Conference, Shanghai, China, pp. 177–184Google Scholar
  45. 45.
    Chandaka S, Chatterjee A, Munshi S (2009) Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Syst Appl Int J 36(2):1329–1336Google Scholar
  46. 46.
    Übeyli˙ ED (2010) Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals. Expert Syst Appl 37(1):233–239Google Scholar
  47. 47.
    Pachori RB, Patidar S (2014) Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput Methods Programs Biomed 113(2):pp 494–502Google Scholar
  48. 48.
    Jie X, Li C, Li H et al (2015) The detection of epileptic seizure signals based on fuzzy entropy. J Neurosci Methods 243:18–25Google Scholar
  49. 49.
    Song JL, Hu W, Zhang R (2015) Automated detection of epileptic EEGs using a novel fusion feature and extreme learning machine. Neurocomputing 175(PA):383–391Google Scholar
  50. 50.
    Yang J, Wang H, Wang W et al (2003) Enhanced Biclustering on Expression Data. In: Proceedings of the 3rd IEEE Symposium on Bioinformatics and Bioengineering, pp. 321–327Google Scholar
  51. 51.
    Akhtar MT, Mitsuhashi W, James CJ (2012) Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data. Signal Process 92(2):401–416Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Information EngineeringGuangdong Medical UniversityDongguanChina
  2. 2.School of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhouChina

Personalised recommendations