Advertisement

Obesity Paradox in Ischemic Stroke: Clinical and Molecular Insights

  • Emilio Rodríguez-Castro
  • Manuel Rodríguez-Yáñez
  • Susana Arias-Rivas
  • María Santamaría-Cadavid
  • Iria López-Dequidt
  • Pablo Hervella
  • Miguel López
  • Francisco Campos
  • Tomás SobrinoEmail author
  • José CastilloEmail author
Original Article
  • 11 Downloads

Abstract

It has recently emerged the concept of “obesity paradox,” a term used to describe the unexpected improved prognosis and lower mortality rates found in several diseases in patients with higher body weight. Concerning stroke, few clinical studies have assessed this obesity paradox showing contradictory results. Therefore, our aim was to compare clinical evolution and inflammatory balance of obese and non-obese patients after ischemic stroke. We designed a prospective case-control study in patients with acute ischemic stroke categorized into obese (body mass index, BMI ≥ 30 kg/m2) and non-obese (BMI < 30 kg/m2). We compared clinical, anthropometric, radiological, and laboratory variables. The main outcome variable was the functional outcome at 3 months. We included 98 patients (48 non-obese and 50 obese). No differences in functional outcome at 3 months were found (p = 0.882) although a tendency of a greater recovery on neurological impairments was seen in obese subjects. Importantly, obese patients (p = 0.007) and patients who experienced poor outcome (p = 0.006) exhibited a higher reduction in body weight at 3 months after stroke. Moreover, pro-inflammatory IL-6 levels (p = 0.002) were higher in the obese group. However, IL-6 levels decreased over the first week in obese while increased in non-obese. On the contrary, levels of the anti-inflammatory IL-10 rose over the first week in obese patients, whereas remained stable in non-obese. In summary, despite exhibiting several factors associated with poor outcome, obese patients do not evolve worse than non-obese after ischemic stroke. Obesity may counterbalance the inflammatory reaction through an anti-inflammatory stream enhanced in the first moments of stroke.

Keywords

Inflammation Ischemic stroke Obesity Outcome Prognosis 

Notes

Funding Information

This project was partially supported by grants from the Spanish Ministry of Economy and Competitiveness (SAF2014-56336-R, SAF2015-71026-R and SAF2017-84267-R), Xunta de Galicia (Consellería Educación: GRC2014/027, 2016-PG068 and IN607A2018/3), Instituto de Salud Carlos III (Proyecto de Excelencia dentro de los Institutos de Investigación Sanitaria (PIE13/00024) and PI17/01103), Spanish Research Network on Cerebrovascular Diseases RETICS-INVICTUS PLUS (RD16/0019), and by the European Union FEDER program. Furthermore, T. Sobrino (CPII17/00027) and F. Campos (CP14/00154) are recipients of research contracts from the Miguel Servet Program of Instituto de Salud Carlos III. The sponsors did not participate in study design, collection, analysis, or interpretation of the data, in writing the report, or in the decision to submit the paper for publication.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval and Patient Consent

This research was carried out in accordance with the Declaration of Helsinki of the World Medical Association (2008) and approved by the Ethics Committee of the Servizo Galego de Saúde. Informed consent was obtained from all individual participants included in the study. If patients were not able to sign, relatives gave signed informed consent.

Supplementary material

12975_2019_695_MOESM1_ESM.docx (287 kb)
Online Resource 1 (DOCX 287 kb)

References

  1. 1.
    Roth J, Qiang X, Marbán SL, Redelt H, Lowell BC. The obesity pandemic: where have we been and where are we going? Obes Res. 2004;12(Suppl 2):88S–101S.CrossRefGoogle Scholar
  2. 2.
    Gruberg L, Weissman NJ, Waksman R, Fuchs S, Deible R, Pinnow EE, et al. The impact of obesity on the short-term and long-term outcomes after percutaneous coronary intervention: the obesity paradox? J Am Coll Cardiol. 2002;39:578–84.CrossRefGoogle Scholar
  3. 3.
    Fleischmann E, Teal N, Dudley J, May W, Bower JD, Salahudeen AK. Influence of excess weight on mortality and hospital stay in 1346 hemodialysis patients. Kidney Int. 1999;55:1560–7.CrossRefGoogle Scholar
  4. 4.
    Curtis JP, Selter JG, Wang Y, Rathore SS, Jovin IS, Jadbabaie F, et al. The obesity paradox: body mass index and outcomes in patients with heart failure. Arch Intern Med. 2005;165:55–61.CrossRefGoogle Scholar
  5. 5.
    Senoo K, Lip GYH. Body mass index and adverse outcomes in elderly patients with atrial fibrillation: the AMADEUS trial. Stroke. 2016;47:523–6.CrossRefGoogle Scholar
  6. 6.
    Landbo C, Prescott E, Lange P, Vestbo J, Almdal TP. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160:1856–61.CrossRefGoogle Scholar
  7. 7.
    Escalante A, Haas RW, del Rincón I. Paradoxical effect of body mass index on survival in rheumatoid arthritis. Arch Intern Med. 2005;165:1624–9.CrossRefGoogle Scholar
  8. 8.
    Olsen TS, Dehlendorff C, Petersen HG, Andersen KK. Body mass index and poststroke mortality. Neuroepidemiology. 2008;30:93–100.CrossRefGoogle Scholar
  9. 9.
    Kim BJ, Lee SH, Jung KH, Yu KH, Lee BC, Roh JK. Dynamics of obesity paradox after stroke, related to time from onset, age, and causes of death. Neurology. 2012;79:856–63.CrossRefGoogle Scholar
  10. 10.
    Kazemi-Bajestani SMR, Ghayour-Mobarhan M, Thrift AG, Ferns GA, Frazadfard MT, Mokhber N, et al. Obesity paradox versus frailty syndrome in first-ever ischemic stroke survivors. Int J Stroke. 2015;10:E75.CrossRefGoogle Scholar
  11. 11.
    Jang SY, Shin Y, Kim DY, Sohn MK, Lee J, Lee S, et al. Effect of obesity on functional outcomes at 6 months post-stroke among elderly Koreans: a prospective multicentre study. BMJ Open. 2015;5:e008712.CrossRefGoogle Scholar
  12. 12.
    Ryu W-S, Lee S-H, Kim CK, Kim BJ, Yoon B-W. Body mass index, initial neurological severity and long-term mortality in ischemic stroke. Cerebrovasc Dis. 2011;32:170–6.CrossRefGoogle Scholar
  13. 13.
    Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121:2111–7.CrossRefGoogle Scholar
  14. 14.
    Iadecola C, Anrathner J. The immunology of stroke: from mechanism to translation. Nat Med. 2012;17:796–808.CrossRefGoogle Scholar
  15. 15.
    European Stroke Organisation (ESO) Executive Committee, ESO Writing Committee. Guidelines for Management of Ischaemic Stroke and Transient Ischaemic Attack 2008. Cerebrovasc Dis. 2008;25:457–507.CrossRefGoogle Scholar
  16. 16.
    Alonso de Leciñana M, Egido JA, Casado I, Ribó M, Dávalos A, Masjuan J, et al. Guía para el tratamiento del infarto cerebral agudo. Neurología. 2014;29:102–22.CrossRefGoogle Scholar
  17. 17.
    Chumlea WC, Guo SS, Wholihan K, Cockram D, Kuczmarski RJ, Johnson CL. Stature prediction equations for elderly non-Hispanic white, non-Hispanic black, and Mexican-American persons developed from NHANES III data. J Am Diet Assoc. 1998;98:137–42.CrossRefGoogle Scholar
  18. 18.
    Chumlea WC, Guo S, Roche AF, Steinbaugh ML. Prediction of body weight for the nonambulatory elderly from anthropometry. J Am Diet Assoc. 1988;88:564–8.Google Scholar
  19. 19.
    WHO. Obesity. Preventing and managing the global epidemic. Report of a WHO consultation. WHO technical report series 894. Geneva: World Health Organization; 2000.Google Scholar
  20. 20.
    Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24:35–41.CrossRefGoogle Scholar
  21. 21.
    Sims JR, Gharai LR, Schaefer PW, Vangel M, Rosenthal ES, Lev MH, et al. ABC/2 for rapid clinical estimate of infarct, perfusion, and mismatch volumes. Neurology. 2009;72:2104–10.CrossRefGoogle Scholar
  22. 22.
    Castillo J, Rodríguez I. Biochemical changes and inflammatory response as markers for brain ischaemia: molecular markers of diagnostic utility and prognosis in human clinical practice. Cerebrovasc Dis. 2004;17(Suppl 1):7–18.CrossRefGoogle Scholar
  23. 23.
    Smith CJ, Emsley HCA, Gavin CM, Georgiou RF, Vail A, Barberan EM, et al. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol. 2004;4:2.CrossRefGoogle Scholar
  24. 24.
    Spera PA, Ellison JA, Feuerstein GZ, Barone FC. IL-10 reduces rat brain injury following focal stroke. Neurosci Lett. 1998;251:189–92.CrossRefGoogle Scholar
  25. 25.
    Strle K, Zhou JH, Shen WH, Broussard SR, Johnson RW, Freund GG, et al. Interleukin-10 in the brain. Crit Rev Immunol. 2001;21:427–49.CrossRefGoogle Scholar
  26. 26.
    Blanco M, Castellanos M, Rodríguez-Yáñez M, Sobrino T, Leira R, Vivancos J, et al. High blood pressure and inflammation are associated with poor prognosis in lacunar infarctions. Cerebrovasc Dis. 2006;22:123–9.CrossRefGoogle Scholar
  27. 27.
    Leira R, Rodríguez-Yáñez M, Castellanos M, Blanco M, Nombela F, Sobrino T, et al. Hyperthermia is a surrogate marker of inflammation-mediated cause of brain damage in acute ischaemic stroke. J Intern Med. 2006;260:343–9.CrossRefGoogle Scholar
  28. 28.
    Castellanos M, Sobrino T, Pedraza S. High plasma glutamate concentrations are associated with growth in acute ischemic stroke. Neurology. 2008;71:1862–8.CrossRefGoogle Scholar
  29. 29.
    Castillo J, Alvarez-Sabín J, Martínez-Vila E, Montaner J, Sobrino T, Vivancos J. Inflammation markers and prediction of post-stroke vascular disease recurrence: the MITICO study. J Neurol. 2009;256:217–24.CrossRefGoogle Scholar
  30. 30.
    Rodríguez-Yáñez M, Sobrino T, Arias S, Vázquez-Herrero F, Brea D, Blanco M, et al. Early biomarkers of clinical-diffusion mismatch in acute ischemic stroke. Stroke. 2011;42:2813–8.CrossRefGoogle Scholar
  31. 31.
    Rodríguez-Yáñez M, Castellanos M, Sobrino T, Brea D, Ramos-Cabrer P, Pedraza S, et al. Interleukin-10 facilitates the selection of patients for systemic thrombolysis. BMC Neurol. 2013;13:62.CrossRefGoogle Scholar
  32. 32.
    Campos F, Blanco M, Barral D, Agulla J, Ramos-Cabrer P, Castillo J. Influence of temperature on ischemic brain: basic and clinical principles. Neurochem Int. 2012;60:495–505.CrossRefGoogle Scholar
  33. 33.
    Towfighi A, Ovbiagele B. The impact of body mass index on mortality after stroke. Stroke. 2009;40:2704–8.CrossRefGoogle Scholar
  34. 34.
    Kim Y, Kim CK, Jung S, Yoon B, Lee S. Obesity-stroke paradox and initial neurological severity. J Neurol Neurosurg Psychiatry. 2015;86:743–7.CrossRefGoogle Scholar
  35. 35.
    Nalliah CJ, Sanders P, Kottkamp H, Kalman JM. The role of obesity in atrial fibrillation. Eur Heart J. 2016;37:1565–72.CrossRefGoogle Scholar
  36. 36.
    Kim CK, Ryu W-S, Kim BJ, Lee S-H. Paradoxical effect of obesity on hemorrhagic transformation after acute ischemic stroke. BMC Neurol. 2013;13:123.CrossRefGoogle Scholar
  37. 37.
    Haley MJ, Lawrence CB. Obesity and stroke: can we translate from rodents to patients? J Cereb Blood Flow Metab. 2016;36:2007–21.CrossRefGoogle Scholar
  38. 38.
    Maachi M, Piéroni L, Bruckert E, Jardel C, Fellahi S, Hainque B, et al. Systemic low-grade inflammation is related to both circulating and adipose tissue TNFα, leptin and IL-6 levels in obese women. Int J Obes. 2004;28:993–7.CrossRefGoogle Scholar
  39. 39.
    Khaodhiar L, Ling P-R, Blackburn GL, Bistrian BR. Serum levels of interleukin-6 and c-reactive protein correlate with body mass index across the broad range of obesity. J Parenter Enter Nutr. 2004;28:410–5.CrossRefGoogle Scholar
  40. 40.
    Terao S, Yilmaz G, Stokes KY, Ishikawa M, Kawase T, Granger DN. Inflammatory and injury responses to ischemic stroke in obese mice. Stroke. 2008;39:943–50.CrossRefGoogle Scholar
  41. 41.
    Bowes MP, Rothlein R, Fagan SC, Zivin JA. Monoclonal antibodies preventing leukocyte activation reduce experimental neurologic injury and enhance efficacy of thrombolytic therapy. Neurology. 1995;45:815–9.CrossRefGoogle Scholar
  42. 42.
    Härtl R, Schürer L, Schmid-Schönbein GW, del Zoppo GJ. Experimental antileukocyte interventions in cerebral ischemia. J Cereb Blood Flow Metab. 1996;16:1108–19.CrossRefGoogle Scholar
  43. 43.
    Vila N, Castillo J, Dávalos A, Chamorro A. Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke. 2000;31:2325–9.CrossRefGoogle Scholar
  44. 44.
    Castellanos M, Castillo J, García MM, Leira R, Serena J, Chamorro A, et al. Inflammation-mediated damage in progressing lacunar infarctions. Stroke. 2002;33:982–7.CrossRefGoogle Scholar
  45. 45.
    Scherbakov N, Dirnagl U, Doehner W. Body weight after stroke: lessons from the obesity paradox. Stroke. 2011;42:3646–50.CrossRefGoogle Scholar
  46. 46.
    Wohlfahrt P, Lopez-jimenez F, Krajcoviechova A, Jozifova M, Mayer O, Vanek J, et al. The obesity paradox and survivors of ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24:1443–50.CrossRefGoogle Scholar
  47. 47.
    Kim Y, Kim CK, Jung S, Ko S-B, Lee S-H, Yoon B-W. Prognostic importance of weight change on short-term functional outcome in acute ischemic stroke. Int J Stroke. 2015;10:62–8.CrossRefGoogle Scholar
  48. 48.
    Jonsson A-C, Lindgren I, Norrving B, Lindgren A. Weight loss after stroke: a population-based study from the Lund Stroke Register. Stroke. 2008;39:918–23.CrossRefGoogle Scholar
  49. 49.
    Myers J, Lata K, Chowdhury S, McAuley P, Jain N, Froelicher V. The obesity paradox and weight loss. Am J Med. 2011;124:924–30.CrossRefGoogle Scholar
  50. 50.
    Dinarello CA, Cannon JG, Mancilla J, Bishai I, Lees J, Coceani F. Interleukin-6 as an endogenous pyrogen: induction of prostaglandin E2 in brain but not in peripheral blood mononuclear cells. Brain Res. 1991;562:199–206.CrossRefGoogle Scholar
  51. 51.
    Kinoshita K, Chatzipanteli i K, Vitarbo E, Truettner JS, Alonso OF, Dietrich WD. Interleukin-1beta messenger ribonucleic acid and protein levels after fluid-percussion brain injury in rats: importance of injury severity and brain temperature. Neurosurgery. 2002;51:195–203.CrossRefGoogle Scholar
  52. 52.
    Dietrich WD, Chatzipanteli K, Vitarbo E, Wada K, Kinoshita K. The role of inflammatory processes in the pathophysiology and treatment of brain and spinal cord trauma. Acta Neurochir Suppl. 2004;89:69–74.Google Scholar
  53. 53.
    Badjatia N. Hyperthermia and fever control in brain injury. Crit Care Med. 2009;37:S250–7.CrossRefGoogle Scholar
  54. 54.
    Contreras C, González F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, et al. The brain and brown fat. Ann Med. 2005;47:150–68.CrossRefGoogle Scholar
  55. 55.
    Gallagher D, Visser M, Sepúlveda D, Pierson RN, Harris T, Heymsfield SB. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol. 1996;143:228–39.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Emilio Rodríguez-Castro
    • 1
    • 2
  • Manuel Rodríguez-Yáñez
    • 1
    • 2
  • Susana Arias-Rivas
    • 1
    • 2
  • María Santamaría-Cadavid
    • 1
    • 2
  • Iria López-Dequidt
    • 1
    • 2
  • Pablo Hervella
    • 2
  • Miguel López
    • 3
  • Francisco Campos
    • 2
  • Tomás Sobrino
    • 2
    Email author
  • José Castillo
    • 2
    Email author
  1. 1.Stroke Unit, Department of NeurologyHospital Clínico UniversitarioSantiago de CompostelaSpain
  2. 2.Clinical Neurosciences Research LaboratoryHealth Research Institute of Santiago de Compostela (IDIS)Santiago de CompostelaSpain
  3. 3.NeurObesity Group, Department of Physiology, CIMUSUniversidade de Santiago de Compostela and Health Research Institute of Santiago de Compostela (IDIS)Santiago de CompostelaSpain

Personalised recommendations