Translational Stroke Research

, Volume 10, Issue 1, pp 112–119 | Cite as

Brain Ceruloplasmin Expression After Experimental Intracerebral Hemorrhage and Protection Against Iron-Induced Brain Injury

  • Hongwei Liu
  • Ya Hua
  • Richard F. Keep
  • Guohua XiEmail author
Original Article


Ceruloplasmin (CP) is an essential ferroxidase that is involved in maintaining iron homeostasis by oxidizing toxic ferrous iron (Fe2+) to less-toxic ferric iron (Fe3+). CP has been well studied in many neurodegenerative diseases, but there has not been an in-depth investigation in intracerebral hemorrhage (ICH). This research investigated brain CP expression in rats after ICH and the effect of CP on Fe2+-induced brain injury. This study had two parts: first, rats had injection of autologous blood into the right basal ganglia and the time course of CP expression in the brain examined (protein and mRNA). Second, rats had an injection of either Fe2+ in saline, Fe2+ plus CP in saline, or saline alone into the right basal ganglia. All rats in the second part had T2-weighted magnetic resonance imaging, and behavioral tests before the brains were harvested for immunohistochemistry and Western blotting. We found that CP was expressed on neurons and astrocytes in both cortex and basal ganglia after ICH. The time course showed that ICH induced CP expression increased from 4 h to 7 days, peaking at day 3. Whether the brain itself can produce CP was confirmed by RT-PCR. Exogenous CP reduced Fe2+-induced T2 lesions, blood-brain barrier disruption, brain cell death, and neurological deficits. These results suggest a role of CP in potentially reducing ICH-induced brain injury.


Blood-brain barrier disruption Cerebral hemorrhage Ceruloplasmin Iron Neuronal death 



This work was supported by grants NS-091545, NS-090925, NS-096917, and NS-106746 from the National Institutes of Health (NIH).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All institutional and national guidelines for the care and use of laboratory animals were followed.


  1. 1.
    Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral hemorrhage. Lancet Neurol. 2006;5:53–63.CrossRefGoogle Scholar
  2. 2.
    Wilkinson DA, Pandey AS, Thompson BG, Keep RF, Hua Y, Xi G. Injury mechanisms in acute intracerebral hemorrhage. Neuropharmacology. 2018;134:240–8.CrossRefGoogle Scholar
  3. 3.
    Garton T, Keep RF, Wilkinson DA, Strahle JM, Hua Y, Garton HJ, et al. Intraventricular hemorrhage: the role of blood components in secondary injury and hydrocephalus. Transl Stroke Res. 2016;7:447–51.CrossRefGoogle Scholar
  4. 4.
    Xiong XY, Wang J, Qian ZM, Yang QW. Iron and intracerebral hemorrhage: from mechanism to translation. Transl Stroke Res. 2014;5:429–41.CrossRefGoogle Scholar
  5. 5.
    Bielli P, Calabrese L. Structure to function relationships in ceruloplasmin: a ‘moonlighting’ protein. Cell Mol Life Sci. 2002;59:1413–27.CrossRefGoogle Scholar
  6. 6.
    Klomp LW, Farhangrazi ZS, Dugan LL, Gitlin JD. Ceruloplasmin gene expression in the murine central nervous system. J Clin Invest. 1996;98:207–15.CrossRefGoogle Scholar
  7. 7.
    Texel SJ, Xu X, Harris ZL. Ceruloplasmin in neurodegenerative diseases. Biochem Soc Trans. 2008;36:1277–81.CrossRefGoogle Scholar
  8. 8.
    Zheng M, Du H, Ni W, Koch LG, Britton SL, Keep RF, et al. Iron-induced necrotic brain cell death in rats with different aerobic capacity. Transl Stroke Res. 2015;6:215–23.CrossRefGoogle Scholar
  9. 9.
    Jin H, Xi G, Keep RF, Wu J, Hua Y. Darpp-32 to quantify intracerebral hemorrhage-induced neuronal death in basal ganglia. Transl Stroke Res. 2013;4:130–4.CrossRefGoogle Scholar
  10. 10.
    Dang G, Yang Y, Wu G, Hua Y, Keep RF, Xi G. Early erythrolysis in the hematoma after experimental intracerebral hemorrhage. Transl Stroke Res. 2017;8:174–82.CrossRefGoogle Scholar
  11. 11.
    Hua Y, Xi G, Keep RF, Wu J, Jiang Y, Hoff JT. Plasminogen activator inhibitor-1 induction after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 2002;22:55–61.CrossRefGoogle Scholar
  12. 12.
    Ni W, Zheng M, Xi G, Keep RF, Hua Y. Role of lipocalin-2 in brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2015;35:1454–61.CrossRefGoogle Scholar
  13. 13.
    Wan S, Cheng Y, Jin H, Guo D, Hua Y, Keep RF, et al. Microglia activation and polarization after intracerebral hemorrhage in mice: the role of protease-activated receptor-1. Transl Stroke Res. 2016;7:478–87.CrossRefGoogle Scholar
  14. 14.
    Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G. Behavioral tests after intracerebral hemorrhage in the rat. Stroke. 2002;33:2478–84.CrossRefGoogle Scholar
  15. 15.
    Altamura C, Squitti R, Pasqualetti P, Gaudino C, Palazzo P, Tibuzzi F, et al. Ceruloplasmin/transferrin system is related to clinical status in acute stroke. Stroke. 2009;40:1282–8.CrossRefGoogle Scholar
  16. 16.
    Kristinsson J, Snaedal J, Torsdottir G, Johannesson T. Ceruloplasmin and iron in Alzheimer’s disease and Parkinson’s disease: a synopsis of recent studies. Neuropsychiatr Dis Treat. 2012;8:515–21.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Vassiliev V, Harris ZL, Zatta P. Ceruloplasmin in neurodegenerative diseases. Brain Res Rev. 2005;49:633–40.CrossRefGoogle Scholar
  18. 18.
    Kaneko K, Hineno A, Yoshida K, Ikeda S. Increased vulnerability to rotenone-induced neurotoxicity in ceruloplasmin-deficient mice. Neurosci Lett. 2008;446:56–8.CrossRefGoogle Scholar
  19. 19.
    Chang YZ, Qian ZM, Du JR, Zhu L, Xu Y, Li LZ, et al. Ceruloplasmin expression and its role in iron transport in c6 cells. Neurochem Int. 2007;50:726–33.CrossRefGoogle Scholar
  20. 20.
    Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, David S. Ceruloplasmin regulates iron levels in the cns and prevents free radical injury. J Neurosci. 2002;22:6578–86.CrossRefGoogle Scholar
  21. 21.
    Zanardi A, Conti A, Cremonesi M, D'Adamo P, Gilberti E, Apostoli P, et al. Ceruloplasmin replacement therapy ameliorates neurological symptoms in a preclinical model of aceruloplasminemia. EMBO Mol Med. 2018;10:91–106.CrossRefGoogle Scholar
  22. 22.
    Patel BN, Dunn RJ, David S. Alternative rna splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain. J Biol Chem. 2000;275:4305–10.CrossRefGoogle Scholar
  23. 23.
    Yang S, Hua Y, Nakamura T, Keep RF, Xi G. Upregulation of brain ceruloplasmin in thrombin preconditioning. Acta Neurochir Suppl. 2006;96:203–6.CrossRefGoogle Scholar
  24. 24.
    Zhao F, Xi G, Liu W, Keep RF, Hua Y. Minocycline attenuates iron-induced brain injury. Acta Neurochir Suppl. 2016;121:361–5.CrossRefGoogle Scholar
  25. 25.
    Gaasch JA, Lockman PR, Geldenhuys WJ, Allen DD, Van der Schyf CJ. Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res. 2007;32:1196–208.CrossRefGoogle Scholar
  26. 26.
    Welch KD, Davis TZ, Van Eden ME, Aust SD. Deleterious iron-mediated oxidation of biomolecules. Free Radic Biol Med. 2002;32:577–83.CrossRefGoogle Scholar
  27. 27.
    Calabrese V, Lodi R, Tonon C, D'Agata V, Sapienza M, Scapagnini G, et al. Oxidative stress, mitochondrial dysfunction and cellular stress response in friedreich’s ataxia. J Neurol Sci. 2005;233:145–62.CrossRefGoogle Scholar
  28. 28.
    Shamoto-Nagai M, Maruyama W, Yi H, Akao Y, Tribl F, Gerlach M, et al. Neuromelanin induces oxidative stress in mitochondria through release of iron: mechanism behind the inhibition of 26s proteasome. J Neural Transm. 2006;113:633–44.CrossRefGoogle Scholar
  29. 29.
    Garton T, Keep RF, Hua Y, Xi G. Brain iron overload following intracranial haemorrhage. Stroke Vasc Neurol. 2016;1:172–84.CrossRefGoogle Scholar
  30. 30.
    Karwacki Z, Kowianski P, Dziewatkowski J, Domaradzka-Pytel B, Ludkiewcz B, Wojcik S, et al. Apoptosis in the course of experimental intracerebral haemorrhage in the rat. Folia Morphol (Warsz). 2005;64:248–52.Google Scholar
  31. 31.
    David S, Patel BN. Ceruloplasmin: structure and function of an essential ferroxidase. Adv Struct Biol. 2000;6:211–37.CrossRefGoogle Scholar
  32. 32.
    Zhao L, Hadziahmetovic M, Wang C, Xu X, Song Y, Jinnah HA, et al. Cp/heph mutant mice have iron-induced neurodegeneration diminished by deferiprone. J Neurochem. 2015;135:958–74.CrossRefGoogle Scholar
  33. 33.
    Texel SJ, Zhang J, Camandola S, Unger EL, Taub DD, Koehler RC, et al. Ceruloplasmin deficiency reduces levels of iron and bdnf in the cortex and striatum of young mice and increases their vulnerability to stroke. PLoS One. 2011;6:e25077.CrossRefGoogle Scholar
  34. 34.
    Shin EJ, Jeong JH, Chung CK, Kim DJ, Wie MB, Park ES, et al. Ceruloplasmin is an endogenous protectant against kainate neurotoxicity. Free Radic Biol Med. 2015;84:355–72.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hongwei Liu
    • 1
    • 2
  • Ya Hua
    • 1
  • Richard F. Keep
    • 1
  • Guohua Xi
    • 1
    Email author
  1. 1.Department of Neurosurgery, R5018 BSRBUniversity of MichiganAnn ArborUSA
  2. 2.Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations