Advertisement

Uric Acid Treatment After Stroke Prevents Long-Term Middle Cerebral Artery Remodelling and Attenuates Brain Damage in Spontaneously Hypertensive Rats

  • Elena Jiménez-Xarrié
  • Belén Pérez
  • Ana Paula Dantas
  • Lídia Puertas-Umbert
  • Joan Martí-Fabregas
  • Ángel Chamorro
  • Anna Maria Planas
  • Elisabet Vila
  • Francesc Jiménez-Altayó
Original Article
  • 106 Downloads

Abstract

Hypertension is the most important modifiable risk factor for stroke and is associated with poorer post-stroke outcomes. The antioxidant uric acid is protective in experimental normotensive ischaemic stroke. However, it is unknown whether this treatment exerts long-term protection in hypertension. We aimed to evaluate the impact of transient intraluminal middle cerebral artery (MCA) occlusion (90 min)/reperfusion (1–15 days) on brain and vascular damage progression in adult male Wistar-Kyoto (WKY; n = 36) and spontaneously hypertensive (SHR; n = 37) rats treated (i.v./120 min post-occlusion) with uric acid (16 mg kg−1) or vehicle (Locke’s buffer). Ischaemic brain damage was assessed longitudinally with magnetic resonance imaging and properties of MCA from both hemispheres were studied 15 days after stroke. Brain lesions in WKY rats were associated with a transitory increase in circulating IL-18 and cerebrovascular oxidative stress that did not culminate in long-term MCA alterations. In SHR rats, more severe brain damage and poorer neurofunctional outcomes were coupled to higher cortical cerebral blood flow at the onset of reperfusion, a transient increase in oxidative stress and long-lasting stroke-induced MCA hypertrophic remodelling. Thus, stroke promotes larger brain and vascular damage in hypertensive rats that persists for long-time. Uric acid administered during early reperfusion attenuated short- and long-term brain injuries in both normotensive and hypertensive rats, an effect that was associated with abolishment of the acute oxidative stress response and prevention of stroke-induced long-lasting MCA remodelling in hypertension. These results suggest that uric acid might be an effective strategy to improve stroke outcomes in hypertensive subjects.

Keywords

Hypertension Ischaemia-reperfusion Ischaemic stroke Vascular remodelling Oxidative stress Antioxidant 

Notes

Acknowledgements

We are grateful to Núria Masip Salas, Marina Purroy Rodríguez and Cristina Ríos Delgado for helpful technical assistance, to the confocal microscopy facility of the Universitat Autònoma de Barcelona and to the joint nuclear magnetic resonance facility of the Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Cerdanyola del Vallès, Spain), Unit 25 of NANBIOSIS.

Author Contributions

F.J-A. and E.V. conceived the study and designed the experiments; F.J-A., E.V., E.J-X., B.P., AP.D. and L.P-U. performed the experiments and analysed the data; F.J-A. prepared the article; AM.P., A.C. and J.M-F. provided critical analysis; and all authors edited and approved the manuscript.

Funding Information

This study was supported by Ministerio de Ciencia e Innovación [SAF2014-56111-R] to E.V., B.P. and F.J-A.; Generalitat de Catalunya [2017-SGR-645] to AM.P., A.C., E.V. and F.J-A.; and Instituto Carlos III [FIS PI13/0091, RIC RD12/0042/0006] to AP.D. Instituto de Salud Carlos III (Spain) co-funded by EU FEDER funds Redes Temáticas de Investigación Cooperativa Sanitaria RETICS-INVICTUS-RD16/019 to J.M-F./E.J-X and to A.C./AM.P.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

A.C. is inventor of the patent “Pharmaceutical composition for neuroprotective treatment in patients with ictus comprising citicoline and uric acid”.

Ethical Approval

All institutional and national guidelines for the care and use of laboratory animals were followed. All of the experiments were carried out under the Guidelines established by the Spanish legislation (RD 1201/2005) and according to the Guide for the Care and Use of Laboratory Animals, published by the US National Institutes of Health (NIH Publication 85-23, revised 1996). Experiments were approved by the Ethics Committee of the Universitat Autònoma de Barcelona and were carried out in compliance with the European legislation.

Supplementary material

12975_2018_661_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1395 kb)

References

  1. 1.
    Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383:245–54.CrossRefGoogle Scholar
  2. 2.
    O'Donnell MJ, Chin SL, Rangarajan S, Xavier D, Liu L, Zhang H, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016;388:761–75.CrossRefGoogle Scholar
  3. 3.
    Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. American Heart Association Stroke Council. Stroke 2015;46(10):3020–35.Google Scholar
  4. 4.
    Renú A, Laredo C, Lopez-Rueda A, Llull L, Tudela R, San-Roman L, et al. Vessel wall enhancement and blood-cerebrospinal fluid barrier disruption after mechanical thrombectomy in acute ischemic stroke. Stroke. 2017;48(3):651–7.CrossRefGoogle Scholar
  5. 5.
    Chamorro Á, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15(8):869–81.CrossRefGoogle Scholar
  6. 6.
    Ginsberg MD. Expanding the concept of neuroprotection for acute ischemic stroke: the pivotal roles of reperfusion and the collateral circulation. Prog Neurobiol. 2016;145–6:46–77.CrossRefGoogle Scholar
  7. 7.
    Neuhaus AA, Couch Y, Hadley G, Buchan AM. Neuroprotection in stroke: the importance of collaboration and reproducibility. Brain. 2017;140(8):2079–92.CrossRefGoogle Scholar
  8. 8.
    Lees KR, Zivin JA, Ashwood T, Davalos A, Davis SM, Diener HC, et al. NXY-059 for acute ischemic stroke. N Engl J Med. 2006;354(6):588–600.CrossRefGoogle Scholar
  9. 9.
    O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59:467–77.CrossRefGoogle Scholar
  10. 10.
    Shuaib A, Lees KR, Lyden P, Grotta J, Davalos A, Davis SM, et al. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med. 2007;357:562–71.CrossRefGoogle Scholar
  11. 11.
    Feng S, Yang Q, Liu M, Li W, Yuan W, Zhang S, et al. Edaravone for acute ischaemic stroke. Cochrane Database Syst Rev. 2011;12:CD007230.Google Scholar
  12. 12.
    Yu ZF, Bruce-Keller AJ, Goodman Y, Mattson MP. Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J Neurosci Res. 1998;53:613–25.CrossRefGoogle Scholar
  13. 13.
    Romanos E, Planas AM, Amaro S, Chamorro A. Uric acid reduces brain damage and improves the benefits of rt-PA in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab. 2007;27:14–20.CrossRefGoogle Scholar
  14. 14.
    Ma YH, Su N, Chao XD, Zhang YQ, Zhang L, Han Luo PF, et al. Thioredoxin-1 attenuates post-ischemic neuronal apoptosis via reducing oxidative/nitrative stress. Neurochem Int. 2012;60:475–83.CrossRefGoogle Scholar
  15. 15.
    Onetti Y, Dantas AP, Pérez B, Cugota R, Chamorro A, Planas AM, et al. Middle cerebral artery remodeling following transient brain ischemia is linked to early postischemic hyperemia: a target of uric acid treatment. Am J Physiol Heart Circ Physiol. 2015;308(8):H862–74.CrossRefGoogle Scholar
  16. 16.
    Justicia C, Salas-Perdomo A, Pérez-de-Puig I, Deddens LH, van Tilborg GAF, Castellví C, et al. Uric acid is protective after cerebral ischemia/reperfusion in hyperglycemic mice. Transl Stroke Res. 2017;8(3):294–305.CrossRefGoogle Scholar
  17. 17.
    Dhanesha N, Vázquez-Rosa E, Cintrón-Pérez CJ, Thedens D, Kort AJ, Chuong V, et al. Treatment with uric acid reduces infarct and improves neurologic function in female mice after transient cerebral ischemia. J Stroke Cerebrovasc Dis. 2018;27(5):1412–6.CrossRefGoogle Scholar
  18. 18.
    Chamorro A, Amaro S, Castellanos M, Segura T, Arenillas J, Martí-Fábregas J, et al. Safety and efficacy of uric acid in patients with acute stroke (URICO-ICTUS): a randomised, double-blind phase 2b/3 trial. Lancet Neurol. 2014;13(5):453–60.CrossRefGoogle Scholar
  19. 19.
    Amaro S, Laredo C, Renú A, Llull L, Rudilosso S, Obach V, et al. Uric acid therapy prevents early ischemic stroke progression: a tertiary analysis of the URICO-ICTUS Trial (Efficacy Study of Combined Treatment With Uric Acid and r-tPA in Acute Ischemic Stroke). Stroke. 2016;47(11):2874–6.CrossRefGoogle Scholar
  20. 20.
    Llull L, Laredo C, Renú A, Pérez B, Vila E, Obach V, et al. Uric acid therapy improves clinical outcome in women with acute ischemic stroke. Stroke. 2015;46:2162–7.CrossRefGoogle Scholar
  21. 21.
    Amaro S, Llull L, Renú A, Laredo C, Perez B, Vila E, et al. Uric acid improves glucose-driven oxidative stress in human ischemic stroke. Ann Neurol. 2015;77:775–83.CrossRefGoogle Scholar
  22. 22.
    Chamorro Á, Amaro S, Castellanos M, Gomis M, Urra X, Blasco J, et al. Uric acid therapy improves the outcomes of stroke patients treated with intravenous tissue plasminogen activator and mechanical thrombectomy. Int J Stroke. 2017;12(4):377–82.CrossRefGoogle Scholar
  23. 23.
    Baumbach GL, Heistad DD. Cerebral circulation in chronic arterial hypertension. Hypertension. 1988;12:89–5.CrossRefGoogle Scholar
  24. 24.
    Pires PW, Dams Ramos CM, Matin N, Dorrance AM. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol. 2013;304(12):H1598–14.CrossRefGoogle Scholar
  25. 25.
    Dorrance AM. The effects of hypertension and stroke on the cerebral vasculature. V. Aiyagari, P.B. Gorelick (eds.). Hypertension and stroke. Clinical Hypertension and Vascular Diseases. 2016;81–108.Google Scholar
  26. 26.
    Jiménez-Altayó F, Martín A, Rojas S, Justicia C, Briones AM, Giraldo J, et al. Transient middle cerebral artery occlusion causes different structural, mechanical, and myogenic alterations in normotensive and hypertensive rats. Am J Physiol Heart Circ Physiol. 2007;293(1):H628–35.CrossRefGoogle Scholar
  27. 27.
    Briones AM, Arribas SM, Salaices M. Role of extracellular matrix in vascular remodeling of hypertension. Curr Opin Nephrol Hypertens. 2010;19(2):187–94.CrossRefGoogle Scholar
  28. 28.
    Cipolla MJ, McCall AL, Lessov N, Porter JM. Reperfusion decreases myogenic reactivity and alters middle cerebral artery function after focal cerebral ischemia in rats. Stroke. 1997;28(1):176–80.CrossRefGoogle Scholar
  29. 29.
    Coulson RJ, Chesler NC, Vitullo L, Cipolla MJ. Effects of ischemia and myogenic activity on active and passive mechanical properties of rat cerebral arteries. Am J Physiol Heart Circ Physiol. 2002;283(6):H2268–75.CrossRefGoogle Scholar
  30. 30.
    Winters A, Taylor JC, Ren M, Ma R, Liu R, Yang SH. Transient focal cerebral ischemia induces long-term cerebral vasculature dysfunction in a rodent experimental stroke model. Transl Stroke Res. 2012;3(2):279–85.CrossRefGoogle Scholar
  31. 31.
    Albers GW, Goldstein LB, Hess DC, Wechsler LR, Furie KL, Gorelick PB, et al. Stroke Treatment Academic Industry Roundtable (STAIR) recommendations for maximizing the use of intravenous thrombolytics and expanding treatment options with intra-arterial and neuroprotective therapies. Stroke. 2011;42(9):2645–50.CrossRefGoogle Scholar
  32. 32.
    Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412.CrossRefGoogle Scholar
  33. 33.
    Moldes O, Sobrino T, Blanco M, Agulla J, Barral D, Ramos-Cabrer P, et al. Neuroprotection afforded by antagonists of endothelin-1 receptors in experimental stroke. Neuropharmacology. 2012;63(8):1279–85.CrossRefGoogle Scholar
  34. 34.
    Dantas AP, Onetti Y, Oliveira MA, Carvalho MH, Heras M, Vila E, et al. Western diet consumption promotes vascular remodeling in non-senescent mice consistent with accelerated senescence, but does not modify vascular morphology in senescent ones. Exp Gerontol. 2014;55:1–11.CrossRefGoogle Scholar
  35. 35.
    Pires PW, Girgla SS, Moreno G, McClain JL, Dorrance AM. Tumor necrosis factor-α inhibition attenuates middle cerebral artery remodeling but increases cerebral ischemic damage in hypertensive rats. Am J Physiol Heart Circ Physiol. 2014;307(5):H658–69.CrossRefGoogle Scholar
  36. 36.
    Laurindo FR, Fernandes DC, Santos CX. Assessment of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation products. Methods Enzymol. 2008;441:237–60.CrossRefGoogle Scholar
  37. 37.
    Samhan-Arias AK, Fortalezas S, Cordas CM, Moura I, Moura JJG, Gutierrez-Merino C. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c. Redox Biol. 2018;15:109–14.CrossRefGoogle Scholar
  38. 38.
    Michalski R, Michalowski B, Sikora A, Zielonka J, Kalyanaraman B. On the use of fluorescence lifetime imaging and dihydroethidium to detect superoxide in intact animals and ex vivo tissues: a reassessment. Free Radic Biol Med. 2014;67:278–84.CrossRefGoogle Scholar
  39. 39.
    Dikalov S, Griendling KK, Harrison DG. Measurement of reactive oxygen species in cardiovascular studies. Hypertension. 2007;49:717–27.CrossRefGoogle Scholar
  40. 40.
    Novensa L, Selent J, Pastor M, Sandberg K, Heras M, Dantas AP. Equine estrogens impair nitric oxide production and endothelial nitric oxide synthase transcription in human endothelial cells compared with the natural 17{beta}-estradiol. Hypertension. 2010;56(3):405–11.CrossRefGoogle Scholar
  41. 41.
    Pérez-Asensio FJ, de la Rosa X, Jiménez-Altayó F, Gorina R, Martínez E, Messeguer A, et al. Antioxidant CR-6 protects against reperfusion injury after a transient episode of focal brain ischemia in rats. J Cereb Blood Flow Metab. 2010;30:638–52.CrossRefGoogle Scholar
  42. 42.
    Traupe H, Kruse E, Heiss WD. Reperfusion of focal ischemia of varying duration: postischemic hyper- and hypo-perfusion. Stroke. 1982;13(5):615–22.CrossRefGoogle Scholar
  43. 43.
    Tamura A, Asano T, Sano K. Correlation between rCBF and histological changes following temporary middle cerebral artery occlusion. Stroke. 1980;11:487–93.CrossRefGoogle Scholar
  44. 44.
    Kidwell CS, Saver JL, Mattiello J, Starkman S, Vinuela F, Duckwiler G, et al. Diffusion perfusion MRI characterization of post recanalization hyper-perfusion in humans. Neurology. 2001;57:2015–21.CrossRefGoogle Scholar
  45. 45.
    Yu S, Liebeskind DS, Dua S, Wilhalme H, Elashoff D, Qiao XJ, et al. Postischemic hyperperfusion on arterial spin labeled perfusion MRI is linked to hemorrhagic transformation in stroke. J Cereb Blood Flow Metab. 2015;35:630–7.CrossRefGoogle Scholar
  46. 46.
    Coyle P, Heistad DD. Blood flow through cerebral collateral vessels one month after middle cerebral artery occlusion. Stroke. 1987;18(2):407–11.CrossRefGoogle Scholar
  47. 47.
    Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res. 1990;66(1):8–17.CrossRefGoogle Scholar
  48. 48.
    Le Bihan D. Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology. 2013;268(2):318–22.CrossRefGoogle Scholar
  49. 49.
    Jiménez-Altayó F, Caracuel L, Pérez-Asensio FJ, Martínez-Revelles S, Messeguer A, Planas AM, et al. Participation of oxidative stress on rat middle cerebral artery changes induced by focal cerebral ischemia: beneficial effects of 3,4-dihydro-6-hydroxy-7-methoxy-2,2-dimethyl-1(2H)-benzopyran (CR-6). J Pharmacol Exp Ther. 2009;331(2):429–36.CrossRefGoogle Scholar
  50. 50.
    Gerdes N, Sukhova GK, Libby P, Reynolds RS, Young JL, Schönbeck U. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. J Exp Med. 2002;195(2):245–57.CrossRefGoogle Scholar
  51. 51.
    Zaremba J, Losy J. Interleukin-18 in acute ischaemic stroke patients. Neurol Sci. 2003;24(3):117–24.CrossRefGoogle Scholar
  52. 52.
    Yuen CM, Chiu CA, Chang LT, Liou CW, Lu CH, Youssef AA, et al. Level and value of interleukin-18 after acute ischemic stroke. Circ J. 2007;71(11):1691–6.CrossRefGoogle Scholar
  53. 53.
    Jander S, Schroeter M, Stoll G. Interleukin-18 expression after focal ischemia of the rat brain: association with the late-stage inflammatory response. J Cereb Blood Flow Metab. 2002;22(1):62–70.CrossRefGoogle Scholar
  54. 54.
    Wheeler RD, Boutin H, Touzani O, Luheshi GN, Takeda K, Rothwell NJ. No role for interleukin-18 in acute murine stroke-induced brain injury. J Cereb Blood Flow Metab. 2003;23(5):531–5.CrossRefGoogle Scholar
  55. 55.
    Braeuninger S, Kleinschnitz C, Stoll G. Interleukin-18 does not influence infarct volume or functional outcome in the early stage after transient focal brain ischemia in mice. Exp Transl Stroke Med. 2010;2:1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Elena Jiménez-Xarrié
    • 1
  • Belén Pérez
    • 2
  • Ana Paula Dantas
    • 3
  • Lídia Puertas-Umbert
    • 2
  • Joan Martí-Fabregas
    • 1
  • Ángel Chamorro
    • 4
    • 5
  • Anna Maria Planas
    • 5
    • 6
  • Elisabet Vila
    • 2
  • Francesc Jiménez-Altayó
    • 2
  1. 1.Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant PauInstituto de Investigación Biomédica (IIB)-Sant PauBarcelonaSpain
  2. 2.Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de MedicinaUniversitat Autònoma de BarcelonaBellaterraSpain
  3. 3.Institut Clínic CardiovascularInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
  4. 4.Comprehensive Stroke Center, Hospital ClínicUniversity of BarcelonaBarcelonaSpain
  5. 5.Àrea de Neurociènces, IDIBAPSBarcelonaSpain
  6. 6.Departament d’Isquèmia Cerebral i Neurodegeneració, Institut d’Investigacions Biomèdiques de Barcelona (IIBB)Consejo Superior de Investigaciones Científicas (CSIC)BarcelonaSpain

Personalised recommendations