Skip to main content

Advertisement

Log in

Increased Cerebral Oxygen Metabolism and Ischemic Stress in Subjects with Metabolic Syndrome-Associated Risk Factors: Preliminary Observations

  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Hypertension, diabetes, obesity, and dyslipidemia are risk factors that characterize metabolic syndrome (MetS), which increases the risk for stroke by 40%. In a preliminary study, our aim was to evaluate cerebrovascular reactivity and oxygen metabolism in subjects free of vascular disease but with one or more of these risk factors. Volunteers (n = 15) 59 ± 15 (mean ± SD) years of age clear of cerebrovascular disease by magnetic resonance angiography but with one or more risk factors were studied by quantitative positron emission tomography for measurement of cerebral blood flow, oxygen consumption, oxygen extraction fraction (OEF), and acetazolamide cerebrovascular reactivity. Eight of ten subjects with MetS risk factors had OEF >50%. None of the five without risk factors had OEF >50%. The presence of MetS risk factors was highly correlated with OEF >50% by Fisher's exact test (p < 0.007). The increase in OEF was significantly (P < 0.001) correlated with cerebral metabolic rate for oxygen. Increased OEF was not associated with compromised acetazolamide cerebrovascular reactivity. Subjects with one or more MetS risk factors are characterized by increased cerebral oxygen consumption and ischemic stress, which may be related to increased risk of cerebrovascular disease and stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abate N. Obesity and cardiovascular disease. Pathogenetic role of the metabolic syndrome and therapeutic implications. J Diab Complications. 2000;14(3):154–74. Review.

    Article  CAS  Google Scholar 

  2. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome. An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Executive summary. Cardiol Rev. 2005;13(6):322–7.

    PubMed  Google Scholar 

  3. Boden-Albala B, Sacco RL, Lee HS, Grahame-Clarke C, Rundek T, Elkind MV, et al. Metabolic syndrome and ischemic stroke risk: Northern Manhattan Study. Stroke. 2008;39(1):30–5.

    Article  PubMed  Google Scholar 

  4. Arenillas JF, Moro MA, Davalos A. The metabolic syndrome and stroke. Stroke. 2007;38:2196–203.

    Article  PubMed  Google Scholar 

  5. Park K, Yasuda N, Toyonaga S, Yamada SM, Nakabayashi H, Nakasato M, et al. Significant association between leukoaraiosis and metabolic syndrome in healthy subjects. Neurology. 2007;69:974–8.

    Article  CAS  PubMed  Google Scholar 

  6. Kwon H, Kim B, Lee S, Choi S, Oh B, Yoon B. Metabolic syndrome as an independent risk factor of silent brain infarction in healthy people. Stroke. 2006;37:466–70.

    Article  PubMed  Google Scholar 

  7. Bokura H, Yamaguchi S, Iijima K, Nagai A, Oguro H. Metabolic syndrome is associated with silent ischemic brain lesions. Stroke. 2008;39:1607–09.

    Article  PubMed  Google Scholar 

  8. Kurl S, Laukkanen JR, Liskanen L, Laaksonen D, Sivenius J, Nyyssonen K, et al. Metabolic syndrome and the risk of stroke in middle-aged men. Stroke. 2006;37:806–11.

    Article  PubMed  Google Scholar 

  9. Levy AS, Chung JC, Kroetsch JT, Rush JW. Nitric oxide and coronary vascular endothelium adaptations in hypertension. Vasc Health Risk Manag. 2009;5:1075–87.

    CAS  PubMed  Google Scholar 

  10. Li R, Zhang H, Wang W, Wang X, Huang Y, Huang C, et al. Vascular insulin resistance in prehypertensive rats: role of PI3-kinase/Akt/eNOS signaling. Eur J Pharmacol. 2010;628(1–3):140–7.

    Article  CAS  PubMed  Google Scholar 

  11. Knight SF, Yuan J, Roy S, Imig JD. Simvastatin and tempol protect against endothelial dysfunction and renal injury in a model of obesity and hypertension. Am J Physiol Ren Physiol. 2010;298(1):F86–94.

    Article  CAS  Google Scholar 

  12. Aziz N, Mehmood MH, Siddiqi HS, Mandukhail SU, Sadiq F, Maan W, et al. Antihypertensive, antidyslipidemic and endothelial modulating activities of Orchis mascula. Hypertens Res. 2009;32(11):997–1003.

    Article  PubMed  Google Scholar 

  13. Török J, Koprdová R, Cebová M, Kunes J, Kristek F. Functional and structural pattern of arterial responses in hereditary hypertriglyceridemic and spontaneously hypertensive rats in early stage of experimental hypertension. Physiol Res. 2006;55 Suppl 1:S65–71.

    PubMed  Google Scholar 

  14. Abarquez Jr RF. Microvascular disease relevance in the hypertension syndrome. Clin Hemorheol Microcirc. 2003;29(3–4):295–300. Review.

    PubMed  Google Scholar 

  15. Nemoto EM, Yonas H, Kuwabara H, Pindzola R, Sashin D, Meltzer CC, et al. Identification of hemodynamic compromise by cerebrovascular reserve and oxygen extraction fraction in occlusive vascular disease. J Cereb Blood Flow Metab. 2004;24:1081–9.

    Article  PubMed  Google Scholar 

  16. Nemoto EM, Yonas H, Pindzola RR, Kuwabara H, Sashin D, Chang Y, et al. PET OEF reactivity for hemodynamic compromise in occlusive vascular disease. J Neuroimaging. 2007;17:54–60.

    Article  PubMed  Google Scholar 

  17. Dahl A, Russell D, Rootwelt K, Nyberg-Hansen R, Kerty E. Cerebral vasoreactivity assessed with transcranial doppler and regional cerebral blood flow measurements. Dose, serum concentration, and time course of the response to acetazolamide. Stroke. 1995;26:2302–6.

    CAS  PubMed  Google Scholar 

  18. Ohta S, Meyer E, Fujita H, Reutens DC, Evans A, Gjedde A. Cerebral [15O]water clearance in humans determined by PET: I. Theory and normal values. J Cereb Blood Flow Metab. 1996;16:765–80.

    Article  CAS  PubMed  Google Scholar 

  19. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2 15Oautoradiography and positoron emission tomography with respect to the dispersion of the input function. J Cereb Blood Flow Metab. 1986;6:536–45.

    CAS  PubMed  Google Scholar 

  20. Mintun MA, Raichle ME, Martin WRW, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracerss and positron emission tomography. J Nuc Med. 1983;25:177–87.

    Google Scholar 

  21. Ohta S, Meyer E, Thompson CJ, Gjedde A. Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. J Cereb Blood Flow Metab. 1992;12:179–92.

    CAS  PubMed  Google Scholar 

  22. Carson RE, Huang SC, Green MV. Weighted integration method for local cerebral blood flow measurements with positron emission tomography. J Cereb Blood Flow Metab. 1986;6:245–58.

    CAS  PubMed  Google Scholar 

  23. Expert Panel on Detection, Evaluation and Treatment of High Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on the detection, evaluation, and treatment of high blood cholesterol in adults (ATP III). JAMA. 2001;486–2497.

  24. Morrison CD. Leptin signaling in brain: a link between nutrition and cognition? Biochim Biophys Acta. 2009. doi:10.1016/j.bbadis.2008.12.004.

    Google Scholar 

  25. Villanueva EC, Myers Jr MG. Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes. 2008;32:S8–10.

    Article  CAS  Google Scholar 

  26. Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. Hypertension. 1998;31:409–14.

    CAS  PubMed  Google Scholar 

  27. Esler M, Rumantir M, Wiesner G, Kaye D, Hastings J, Lambert G. Sympathetic nervous system and insulin resistance: from obesity to diabetes. Am J Hypertens. 2001;14:304S–9.

    Article  CAS  PubMed  Google Scholar 

  28. Masuo K, Straznicky NE, Lambert GW, Katsuya T, Sugimoto K, Rakugi H, et al. Leptin-receptor polymorphisms relate to obesity through blunted leptin-mediated sympathetic nerve activation in a caucasian male population. Hypertens Res. 2008;31:1093–100.

    Article  CAS  PubMed  Google Scholar 

  29. Straznicky NE, Eikelis N, Lambert EA, Esler MD. Mediators of sympathetic activation in metabolic syndrome obesity. Curr Hypertens Rep. 2008;10:440–7.

    Article  CAS  PubMed  Google Scholar 

  30. Bravo P, Morse S, Borne DM, Aguilar EA, Reisin E. Leptin and hypertension in obesity. Vasc Health Risk Manag. 2006;2(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  31. Kazama K, Wang G, Frys K, Anrather J, Iadecola C. Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol. 2003;285:H1890–9.

    CAS  PubMed  Google Scholar 

  32. Chu KY, Sing P, Gu L. Angiotensin II type 1 receptor antagonism mediates uncoupling protein 2-driven oxidative stress and ameliorates pancreatic islet—cell function in young type 2 diabetic mice. Antioxid Redox Signal. 2007;9:869–78.

    Article  CAS  PubMed  Google Scholar 

  33. Argiles JM, Busquets S, Lopez-Soriano F. The role of uncoupling proteins in pathophysiological states. Biochem Biophys Res Commun. 2002;293:1145–52.

    Article  PubMed  Google Scholar 

  34. Mattiasson G, Sullivan PG. The emerging functions of UCP2 in health, disease, and therapeutics. Antioxid Redox Signal. 2006;8:1–38.

    Article  CAS  PubMed  Google Scholar 

  35. Lee MY, Martin AS, Mehta PK, Dikalova AE, Garrido AM, Lyons E, et al. Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation. Arterioscler Thromb Vasc Biol. 2009;29:00–0.

    Google Scholar 

  36. Grubb Jr RL, Derdeyn CP, Fritsch SM, Carpenter DA, Yundt KD, Videen TO, et al. Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA. 1998;280(12):1055–60.

    Article  PubMed  Google Scholar 

  37. Garrido AM, Griendling KK. NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol. 2008. doi:10.1016/j.mce.2008.11.003.

    PubMed  Google Scholar 

Download references

Acknowledgements

No other persons have made substantial contributions to this manuscript. This work was supported by NIH grants Nos. NS051639 and NS061216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin M. Nemoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchino, K., Lin, R., Zaidi, S.F. et al. Increased Cerebral Oxygen Metabolism and Ischemic Stress in Subjects with Metabolic Syndrome-Associated Risk Factors: Preliminary Observations. Transl. Stroke Res. 1, 178–183 (2010). https://doi.org/10.1007/s12975-010-0028-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-010-0028-2

Keywords

Navigation