Advertisement

Utility of computed tomography in cases of aortic valve stenosis before and after transcatheter aortic valve implantation

  • Hiroyuki TakaokaEmail author
  • Hideki Kitahara
  • Joji Ota
  • Noriko Suzuki-Eguchi
  • Haruka Sasaki
  • Naoto Mori
  • Manami Takahashi
  • Yasunori Iida
  • Kaoru Matsuura
  • Takashi Nakayama
  • Goro Matsumiya
  • Yoshio Kobayashi
Invited Review Article
  • 17 Downloads

Abstract

Trans-catheter aortic valve implantation (TAVI) has been recognized as a useful treatment for patients with severe aortic valve stenosis, particularly those with moderate to high risks of open heart surgery. A thorough evaluation of the aortic valve complex, including the size or presence of calcifications of the leaflets and annulus, is important for the selection of appropriate candidates, artificial valve types and approach. Echocardiography is useful for the precise evaluation of aortic valve stenosis severity and aortic valve complex morphology, but it is not useful to evaluate three-dimensional aortic valve anatomy and pathway for the catheter of aortic valve implantation. Electrocardiography (ECG)-gating computed tomography (CT) has recently been recognized as a useful modality for evaluating significant coronary artery stenosis because of its higher spatial and temporal resolution and diagnostic accuracy based on recent studies. ECG-gating CT is also useful for evaluating aortic valve complex morphology, including calcifications and whole aorta and iliac arteries, as the access route of catheter in TAVI. TAVI candidates, who are at high risk of open surgery, tend to be old and require anti-platelet after TAVI; therefore CT, is also useful for screening for non-cardiac diseases including malignant tumors just before TAVI. Therefore, here we introduce the utility of cardiac and whole body CT in cases of severe aortic valve stenosis before and after TAVI.

Keywords

Transcatheter aortic valve implantation Computed tomography Aortic valve stenosis 

Notes

Acknowledgements

We would like to express our sincere thanks to Mr. Shusuke Chino and Mr. Masaaki Adachi from Ziosoft for their help and assistance in the analysis of the CT strain data. The authors of this manuscript certify that they complied with the principles of ethical publishing of the Cardiovascular Intervention and Therapeutics. This work was partially supported by the Tsuchiya Memorial Medical Foundation (Grant no. J17KF00167).

Author contributions

HT wrote the first draft of the manuscript and prepared the figures. The other authors reviewed and edited the full report.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest, either financial or non-financial, regarding this article.

References

  1. 1.
    Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607.CrossRefGoogle Scholar
  2. 2.
    Reardon MJ, Van Mieghem NM, Popma JJ, Kleiman NS, Søndergaard L, Mumtaz M, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2017;376:1321–31.CrossRefGoogle Scholar
  3. 3.
    Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380:1695–705.CrossRefGoogle Scholar
  4. 4.
    Schroeder S, Achenbach S, Bengel F, Makkar R, Kodali SK, Russo M, et al. Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J. 2008;29:531–56.CrossRefGoogle Scholar
  5. 5.
    Blanke P, Weir-McCall JR, Achenbach S, Delgado V, Hausleiter J, Jilaihawi H, et al. Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR): an expert consensus document of the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr. 2019;13:1–20.CrossRefGoogle Scholar
  6. 6.
    Hayashida K, Bouvier E, Lefèvre T, Hovasse T, Morice MC, Chevalier B, et al. Impact of CT-guided valve sizing on post-procedural aortic regurgitation in transcatheter aortic valve implantation. EuroIntervention. 2012;8:546–55.CrossRefGoogle Scholar
  7. 7.
    Zamorano JL, Gonçalves A, Lang R. Imaging to select and guide transcatheter aortic valve implantation. Eur Heart J. 2014;35:1578–87.CrossRefGoogle Scholar
  8. 8.
    Hansson NC, Nørgaard BL, Barbanti M, Nielsen NE, Yang TH, Tamburino C, et al. The impact of calcium volume and distribution in aortic root injury related to balloon-expandable transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr. 2015;9:382–92.CrossRefGoogle Scholar
  9. 9.
    Watanabe Y, Morice MC, Bouvier E, Leong T, Hayashida K, Lefèvre T, et al. Automated 3-dimensional aortic annular assessment by multidetector computed tomography in transcatheter aortic valve implantation. JACC Cardiovasc Interv. 2013;6:955–64.CrossRefGoogle Scholar
  10. 10.
    Shuman WP, Branch KR, May JM, Mitsumori LM, Lockhart DW, Dubinsky TJ, et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology. 2008;248:431–7.CrossRefGoogle Scholar
  11. 11.
    Suchá D, Tuncay V, Prakken NHJ, Leiner T, van Ooijen PM, Oudkerk M, et al. Does the aortic annulus undergo conformational change throughout the cardiac cycle? A systematic review. Eur Heart J Cardiovasc Imaging. 2015;16:1307–17.Google Scholar
  12. 12.
    Murphy DT, Blanke P, Alaamri S, Naoum C, Rubinshtein R, Pache G, et al. Dynamism of the aortic annulus: effect of diastolic versus systolic CT annular measurements on device selection in transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr. 2016;10:37–43.CrossRefGoogle Scholar
  13. 13.
    Willson AB, Webb JG, Freeman M, Wood DA, Gurvitch R, Thompson CR, et al. Computed tomography-based sizing recommendations for transcatheter aortic valve replacement with balloon-expandable valves: comparison with transesophageal echocardiography and rationale for implementation in a prospective trial. J Cardiovasc Comput Tomogr. 2012;6:406–14.CrossRefGoogle Scholar
  14. 14.
    Blanke P, Russe M, Leipsic J, Reinöhl J, Ebersberger U, Suranyi P, et al. Conformational pulsatile changes of the aortic annulus: impact on prosthesis sizing by computed tomography for transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2012;5:984–94.CrossRefGoogle Scholar
  15. 15.
    Faggioni M, Mehran R. Preventing contrast-induced renal failure: a guide. Interv Cardiol Rev. 2016;11:98–104.Google Scholar
  16. 16.
    Baumgartner H, Falk V, Bax JJ, Bonis MD, Hamm C, Holm PJ, et al. ESC/EACTS guidelines for the management of valvular heart disease: the task force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the european association for cardio-thoracic surgery (EACTS). Eur Heart J. 2017;2017:1–53.Google Scholar
  17. 17.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.CrossRefGoogle Scholar
  18. 18.
    Khalique OK, Hahn RT, Gada H, Nazif TM, Vahl TP, George I, et al. Quantity and location of aortic valve complex calcification predicts severity and location of paravalvular regurgitation and frequency of post-dilation after balloon-expandable transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2014;7:885–94.CrossRefGoogle Scholar
  19. 19.
    Fujita B, Kütting M, Seiffert M, Scholtz S, Egron S, Prashovikj E, et al. Calcium distribution patterns of the aortic valve as a risk factor for the need of permanent pacemaker implantation after transcatheter aortic valve implantation. Eur Hear J Cardiovasc Imaging. 2016;17:1385–93.CrossRefGoogle Scholar
  20. 20.
    Maeno Y, Abramowitz Y, Kawamori H, Kazuno Y, Kubo S, Takahashi N, et al. A highly predictive risk model for pacemaker implantation after TAVR. JACC Cardiovasc Imaging. 2017;10:1139–47.CrossRefGoogle Scholar
  21. 21.
    Ribeiro HB, Webb JG, Makkar RR, Cohen MG, Kapadia SR, Kodali S, et al. Predictive factors, management, and clinical outcomes of coronary obstruction following transcatheter aortic valve implantation: insights from a large multicenter registry. J Am Coll Cardiol. 2013;62:1552–62.CrossRefGoogle Scholar
  22. 22.
    Ribeiro HB, Nombela-Franco L, Urena M, Mok M, Pasian S, Dolye D, et al. Coronary obstruction following transcatheter aortic valve implantation: a systematic review. JACC Cardiovasc Interv. 2013;6:452–4.CrossRefGoogle Scholar
  23. 23.
    Binder RK, Leipsic J, Wood D, Moore T, Toggweiler S, Willson A, et al. Prediction of optimal deployment projection for transcatheter aortic valve replacement: angiographic 3-dimensional reconstruction of the aortic root versus multidetector computed tomography. Circ Cardiovasc Interv. 2012;5:247–52.CrossRefGoogle Scholar
  24. 24.
    Gurvitch R, Webb JG, Yuan R, Johnson M, Hague C, Willson AB, et al. Aortic annulus diameter determination by multidetector computed tomography: reproducibility, applicability, and implications for transcatheter aortic valve implantation. JACC Cardiovasc Interv. 2011;4:1235–45.CrossRefGoogle Scholar
  25. 25.
    Hell MM, Biburger L, Marwan M, Schuhbaeck A, Achenbach S, Lell M, et al. Prediction of fluoroscopic angulations for transcatheter aortic valve implantation by CT angiography: influence on procedural parameters. Eur Heart J Cardiovasc Imaging. 2017;18:906–14.CrossRefGoogle Scholar
  26. 26.
    Blanke P, Pibarot P, Hahn R, Weissman N, Kodali S, Thourani V, et al. Computed tomography–based oversizing degrees and incidence of paravalvular regurgitation of a new generation transcatheter heart valve. JACC Cardiovasc Interv. 2017;10:810–20.CrossRefGoogle Scholar
  27. 27.
    Popma JJ, Reardon MJ, Khabbaz K, Harrison JK, Hughes GC, Kodali S, et al. Early clinical outcomes after transcatheter aortic valve replacement using a novel self-expanding bioprosthesis in patients with severe aortic stenosis who are suboptimal for surgery: results of the Evolut R U.S. Study. JACC Cardiovasc Interv. 2017;10:268–75.CrossRefGoogle Scholar
  28. 28.
    Barbanti M, Yang TH, Rodès Cabau J, Tamburino C, Wood DA, Jilaihawi H, et al. Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement. Circulation. 2013;128:244–53.CrossRefGoogle Scholar
  29. 29.
    Barbanti M, Buccheri S, Rodés-Cabau J, Gulino S, Généreux P, Pilato G, et al. Transcatheter aortic valve replacement with new-generation devices: a systematic review and meta-analysis. Int J Cardiol. 2017;245:83–9.CrossRefGoogle Scholar
  30. 30.
    Urena M, Mok M, Serra V, Dumont E, Nombela-Franco L, DeLarochellière R, et al. Predictive factors and long-term clinical consequences of persistent left bundle branch block following transcatheter aortic valve implantation with a balloon-expandable valve. J Am Coll Cardiol. 2012;60:1743–52.CrossRefGoogle Scholar
  31. 31.
    Aktug Ö, Dohmen G, Brehmer K, Koos R, Altiok E, Deserno V, et al. Incidence and predictors of left bundle branch block after transcatheter aortic valve implantation. Int J Cardiol. 2012;160:26–30.CrossRefGoogle Scholar
  32. 32.
    Sinning JM, Petronio AS, Van Mieghem N, Zucchelli G, Nickenig G, Bekeredjian R, et al. Relation between clinical best practices and 6-month outcomes after transcatheter aortic valve implantation with CoreValve (from the ADVANCE II study). Am J Cardiol. 2017;119:84–90.CrossRefGoogle Scholar
  33. 33.
    Hamdan A, Guetta V, Klempfner R, Konen E, Raanani E, Glikson M, et al. Inverse relationship between membranous septal length and the risk of atrioventricular block in patients undergoing transcatheter aortic valve implantation. JACC Cardiovasc Interv. 2015;8:1218–28.CrossRefGoogle Scholar
  34. 34.
    Takaoka H, Funabashi N, Uehara M, Fujimoto Y, Kobayashi Y. Diagnostic accuracy of coronary 320 slice CT angiography using retrospective electrocardiogram gated acquisition compared with virtual prospective electrocardiogram gated acquisition with and without padding. Int J Cardiol. 2013;168:2811–5.CrossRefGoogle Scholar
  35. 35.
    Uehara M, Funabashi N, Ueda M, Murayama T, Takaoka H, Sawada K, et al. Quality of coronary arterial 320-slice computed tomography images in subjects with chronic atrial fibrillation compared with normal sinus rhythm. Int J Cardiol. 2011;150:65–70.CrossRefGoogle Scholar
  36. 36.
    Rossi A, De Cecco CN, Kennon SRO, Zou L, Meinel FG, Toscano W, et al. CT angiography to evaluate coronary artery disease and revascularization requirement before trans-catheter aortic valve replacement. J Cardiovasc Comput Tomogr. 2017;11:338–46.CrossRefGoogle Scholar
  37. 37.
    Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724–32.CrossRefGoogle Scholar
  38. 38.
    Takaoka H, Funabashi N, Fujimoto Y, Kobayashi Y. Improved diagnostic accuracy of detection of coronary artery stenosis using new iterative reconstruction technique on computed tomography. Circulation. 2018;138:A12568.Google Scholar
  39. 39.
    Van Mieghem NM, Tchetche D, Chieffo A, Dumonteil N, Messika-Zeitoun D, van der Boon RM, et al. Incidence, predictors, and implications of access site complications with transfemoral transcatheter aortic valve implantation. Am J Cardiol. 2012;110:1361–7.CrossRefGoogle Scholar
  40. 40.
    Tamburino C, Capodanno D, Ramondo A, Petronio AS, Ettori F, Santoro G, et al. Incidence and predictors of early and late mortality after transcatheter aortic valve implantation in 663 patients with severe aortic stenosis. Circulation. 2011;123:299–308.CrossRefGoogle Scholar
  41. 41.
    Toggweiler S, Gurvitch R, Leipsic J, Wood DA, Willson AB, Binder RK, et al. Percutaneous aortic valve replacement: vascular outcomes with a fully percutaneous procedure. J Am Coll Cardiol. 2012;59:113–8.CrossRefGoogle Scholar
  42. 42.
    Okuyama K, Jilaihawi H, Kashif M, Takahashi N, Chakravarty T, Pokhrel H, et al. Transfemoral access assessment for transcatheter aortic valve replacement: evidence-based application of computed tomography over invasive angiography. Circ Cardiovasc Imaging. 2014;8:e001995.Google Scholar
  43. 43.
    Basir MB, Velez C, Fuller B, Wyman J, Paone G, Wang DD, et al. Rates of vascular access use in transcatheter aortic valve replacement: a look into the next generation. Catheter Cardiovasc Interv. 2016;87:E166–71.CrossRefGoogle Scholar
  44. 44.
    Gleason TG, Schindler JT, Hagberg RC, Deeb GM, Adams DH, Conte JV, et al. Subclavian/axillary access for self-expanding transcatheter aortic valve replacement renders equivalent outcomes as transfemoral. Ann Thorac Surg. 2018;105:477–83.CrossRefGoogle Scholar
  45. 45.
    Wee IJY, Stonier T, Harrison M, Choong AMTL. Transcarotid transcatheter aortic valve implantation: a systematic review. J Cardiol. 2018;71:525–33.CrossRefGoogle Scholar
  46. 46.
    Greenbaum AB, Babaliaros VC, Chen MY, Stine AM, Rogers T, O’Neill WW, et al. Transcaval access and closure for transcatheter aortic valve replacement: a prospective investigation. J Am Coll Cardiol. 2017;69:511–21.CrossRefGoogle Scholar
  47. 47.
    Yoon SH, Bleiziffer S, De Backer O, Delgado V, Arai T, Ziegelmueller J, et al. Outcomes in transcatheter aortic valve replacement for bicuspid versus tricuspid aortic valve stenosis. J Am Coll Cardiol. 2017;69:2579–89.CrossRefGoogle Scholar
  48. 48.
    Makkar RR, Yoon SH, Leon MB, Chakravarty T, Rinaldi M, Shah PB, et al. Association between transcatheter aortic valve replacement for bicuspid vs tricuspid aortic stenosis and mortality or stroke. JAMA. 2019;321:2193–202.CrossRefGoogle Scholar
  49. 49.
    Hayashida K, Bouvier E, Lefèvre T, Chevalier B, Hovasse T, Romano M, et al. Transcatheter aortic valve implantation for patients with severe bicuspid aortic valve stenosis. Circ Cardiovasc Interv. 2013;3:284–91.CrossRefGoogle Scholar
  50. 50.
    Jilaihawi H, Chen M, Webb J, Himbert D, Ruiz CE, Rodés-Cabau J, et al. A bicuspid aortic valve imaging classification for the TAVR era. JACC Cardiovasc Imaging. 2016;9:1145–58.CrossRefGoogle Scholar
  51. 51.
    Landes U, Kornowski R. Transcatheter valve implantation in degenerated bioprosthetic surgical valves (ViV) in aortic, mitral, and tricuspid positions: a review. Struct Hear. 2017;00:1–11.Google Scholar
  52. 52.
    Ribeiro HB, Rodés-Cabau J, Blanke P, Leipsic J, Kwan Park J, Bapat V, et al. Incidence, predictors, and clinical outcomes of coronary obstruction following transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: insights from the VIVID registry. Eur Heart J. 2018;39:687–95.CrossRefGoogle Scholar
  53. 53.
    Blanke P, Soon J, Dvir D, Park JK, Naoum C, Kueh SH, et al. Computed tomography assessment for transcatheter aortic valve in valve implantation: the vancouver approach to predict anatomical risk for coronary obstruction and other considerations. J Cardiovasc Comput Tomogr. 2016;10:491–9.CrossRefGoogle Scholar
  54. 54.
    Leon MB, Piazza N, Nikolsky E, Blackstone EH, Cutlip DE, Kappetein AP, et al. Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the Valve Academic Research Consortium. Eur Heart J. 2011;32:205–17.CrossRefGoogle Scholar
  55. 55.
    Blanke P, Schoepf UJ, Leipsic JA. CT in transcatheter aortic valve replacement. Radiology. 2013;269:650–69.CrossRefGoogle Scholar
  56. 56.
    Makkar RR, Fontana G, Jilaihawi H, Chakravarty T, Kofoed KF, De Backer O, et al. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N Engl J Med. 2015;373:2015–24.CrossRefGoogle Scholar
  57. 57.
    Bax JJ, Delgado V, Plein S, Knuuti J, Achenbach S. Multimodality imaging: bird’s eye view from The European Society of Cardiology Congress 2017, Barcelona, August 26–30, 2017. J Nucl Cardiol. 2018;25:336–45.CrossRefGoogle Scholar
  58. 58.
    Marwan M, Ammon F, Bittner D, Röther J, Mekkhala N, Hell M, et al. CT-derived left ventricular global strain in aortic valve stenosis patients: a comparative analysis pre and post transcatheter aortic valve implantation. J Cardiovasc Comput Tomogr. 2018;12:240–4.CrossRefGoogle Scholar
  59. 59.
    Ammon F, Bittner D, Hell M, Mansour H, Achenbach S, Arnold M, et al. CT-derived left ventricular global strain: a head-to-head comparison with speckle tracking echocardiography. Int J Cardiovasc Imaging. 2019;35:1701–7.CrossRefGoogle Scholar
  60. 60.
    Tops LF, Delgado V, Marsan NA, Bax JJ. Myocardial strain to detect subtle left ventricular systolic dysfunction. Eur J Heart Fail. 2017;19:307–13.CrossRefGoogle Scholar
  61. 61.
    Nassenstein K, Bruder O, Breuckmann F, Erbel R, Barkhausen J, Schlosser T. Prevalence, pattern, and functional impact of late gadolinium enhancement in left ventricular hypertrophy due to aortic valve stenosis. Rofo. 2009;181:472–6.CrossRefGoogle Scholar
  62. 62.
    Takaoka H, Funabashi N, Ozawa K, Uehara M, Sano K, Komuro I, et al. Improved diagnosis of detection of late enhancement in left ventricular myocardium using 2nd generation 320-slice CT reconstructed with FIRST in non-ischemic cardiomyopathy. Int Heart J. 2018;30(59):542–9.CrossRefGoogle Scholar
  63. 63.
    American College of Cardiology Foundation Task Force on Expert Consensus Documents, Mark DB, Berman DS, Budoff MJ, Carr JJ, Gerber TC, et al. American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010;55:2663–99.CrossRefGoogle Scholar

Copyright information

© Japanese Association of Cardiovascular Intervention and Therapeutics 2019

Authors and Affiliations

  • Hiroyuki Takaoka
    • 1
    Email author
  • Hideki Kitahara
    • 1
  • Joji Ota
    • 2
  • Noriko Suzuki-Eguchi
    • 1
  • Haruka Sasaki
    • 1
  • Naoto Mori
    • 1
  • Manami Takahashi
    • 1
  • Yasunori Iida
    • 3
  • Kaoru Matsuura
    • 4
  • Takashi Nakayama
    • 1
  • Goro Matsumiya
    • 4
  • Yoshio Kobayashi
    • 1
  1. 1.Department of Cardiovascular MedicineChiba University Graduate School of MedicineChibaJapan
  2. 2.Department of RadiologyChiba University HospitalChibaJapan
  3. 3.Department of Cardiovascular SurgerySaiseikai Yokohamashi Tobu HospitalYokohamaJapan
  4. 4.Department of Cardiovascular SurgeryChiba University Graduate School of MedicineChibaJapan

Personalised recommendations