Journal of Crop Science and Biotechnology

, Volume 22, Issue 5, pp 415–423 | Cite as

Metabolic Status during Germination of Nano Silica Primed Zea mays Seeds under Salinity Stress

  • Deyala Mohamed NaguibEmail author
  • Hanan Abdalla
Research Article


Priming is a safe, easy, and effective way to increase plant tolerance against stress. This research aims to study the metabolic status of the nano-silica-primed germinated maize seeds under salinity stress. We prepare the nano-silica solution (10 mg/ml) from rice straw. We primed group maize seeds with nano-silica solution and the other group remained dry. The two seeds group germinated under different concentrations of NaCl (0, 50, 150 mM). Nano-silica primed seeds showed a higher germination rate and seedling vigor index. Priming helps the maize seeds to germinate under salinity stress through increasing the antioxidant enzymes activity which in turn suppresses the increase in the reactive oxygen species and so decreases the lipid peroxidation. Also, priming increases the gibberellin content and therefore activates the amylase and lipase activities which ensured the availability of the simple compounds needed for energy releasing through respiration. Besides that, priming enhances the activity of the respiration enzymes such as aldolase and iso citrate lyase. Finally, nano-silica priming enhanced the metabolic status of maize seeds under salinity stress.


Antioxidant enzymes hydrolysis enzymes respiration enzymes hormones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank Professor Hegazy Sadik Hegazy, professor of physiology, for his effort, time, and patience given to them in this work and the whole life.


  1. Adam F, Fua HK. 2008. Production of silica from biogenic material. Malaysian Patent No.: MY-136715-AGoogle Scholar
  2. Ahmadvand G, Soleimani F, Saadatian B, Pouya M. 2012. Effect of seed priming with potassium nitrate on germination and emergence traits of two soybean cultivars under salinity stress conditions. American-Eurasian J. Agric. Environ. Sci. 12 (6): 769–774, DOI: 10.5829/idosi.aejaes.2012.12.06.1755Google Scholar
  3. Alexieva V, Sergio I, Mapelli S, Karanov E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24: 1337–1344, CrossRefGoogle Scholar
  4. Azimi R, Borzelabad MJ, Feizi H, Azimi A. 2014. Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Pol. J. Chem. Tech. 16 (3): 25–29CrossRefGoogle Scholar
  5. Basra SMA, Farooq M, Tabassum R, Ahmad N. 2005. Physiological and biochemical aspects of seed vigor enhancement treatments in fine rice (Oryza sativa L.). Seed Sci. Technol. 33: 623–628CrossRefGoogle Scholar
  6. Beyer Jr, Fridovich WF. 1987. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 161: 559–566, DOI: 10.1016/0003-2697(87)90489-1PubMedCrossRefGoogle Scholar
  7. Bhattachrjee S. 2005. Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plant. Curr. Sci. 89: 1113–1121Google Scholar
  8. Cai F, Mei LJ, An XL, Gao S, Tang L, Chen F. 2011. Lipid peroxidation and antioxidant responses during seed germination of Jatropha curcas. Int. J. Agric. Biol. 13: 25–30, doi: 10-423/DCX/2011/13-1-25-30Google Scholar
  9. Chono M, Honda I, Shinoda S, Kushiro T, Kamiya Y, Nambara E, Kawakami N, Kaneko S, Watanabe Y. 2006. Field studies on the regulation of abscisic acid content and germinability during grain development of barley: Molecular and chemical analysis of pre-harvest sprouting. J. Exp. Bot. 57: 2421–2434PubMedCrossRefGoogle Scholar
  10. Dixon GH, Kornberg HL. 1959. Assay methods for key enzymes of the glyoxylate cycle. Biochem. J. 72: 3Google Scholar
  11. Draganic I, Lekic S. 2012. Seed priming with antioxidants improves sunflower seed germination and seedling growth under unfavorable germination conditions. Turk. J. Agric. For. 36: 421–428, doi:10.3906/tar-1110-16Google Scholar
  12. Farooq M, Siddique KHM, Rehman HU, Aziz T, Lee DJ, Wahid A. 2011. Rice direct seeding: Experiences, challenges and opportunities. Soil Till. Res. 111: 87–98, doi: Scholar
  13. Ghabdian M, Bakhtiyari S, Barzegar AB. 2015. Atudying the effect of hydro-and halo-priming on germination traits and growth of two genotypes of atriplex in saline conditions. Biol. Forum Inter. J. 7(1): 1649–1653Google Scholar
  14. Ghassemi-Golezani K, Aliloo AA, Valizadeh M, Moghaddam M. 2008. Effects of different priming techniques on seed invigoration and seedling establishment of lentil (Lens culinaris Medik). J. Food Agric. Environ. 2: 222–226Google Scholar
  15. Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909–930. doi: 10.1016/j.plaphy.2010.08.016PubMedCrossRefGoogle Scholar
  16. Hameed A, Sheikh MA, Jamil A, Basra SMA. 2013. Seed priming with sodium silicate enhances seed germination and seedling growth in wheat (Triticum aestivum L.) under water deficit stress induced by polyethylene glycol. Pak. J. Life Soc. Sci. 11: 19–24Google Scholar
  17. Jagannathan V, Singh K, Damodaran M. 1956. Carbohydrate metabolism in citric acid fermentation. iv. purification and properties of aldolase from Aspergillus niger. Biochem. J. 63: 94–105, doi: 10.1042/bj0630094PubMedPubMedCentralGoogle Scholar
  18. Janmohammadi M, Sabaghnia N, Ahadnezhad A. 2015. Impact of silicon dioxide nanoparticles on seedling early growth of lentil (Lens culinaris Medik.) genotypes with various origins. Agric. For. 61 (3): 19–33, doi: 10.17707/AgricultForest.61.3.02Google Scholar
  19. Kar M, Mishra D. 1976. Catalase, peroxidase and polyphenol oxidase activities during rice leaf senescence. Plant Physiol. 57: 315–319, doi: 10.1104/pp.57.2.315PubMedPubMedCentralCrossRefGoogle Scholar
  20. Lara TS, Lira JMS, Rodrigues AC, Rakocevic M, Alvarenga A.A. 2014. Potassium nitrate priming affects the activity of nitrate reductase and antioxidant enzymes in tomato germination. J. Agric. Sci. 6: 72–80Google Scholar
  21. Li HS. 2000. Principles and techniques of plant physiological biochemical experiment. 2nd edition, Higher Education Press, Beijing, ChinaGoogle Scholar
  22. Lyons K, Scrinis G, Whelan J. 2012. Nanotechnology, Agriculture, and Food. In: D Maclurcan, N Radywyl, eds. Nanotechnology and Global Sustainablity. Boca Raton: CRC Press, pp 117-140Google Scholar
  23. Ma H, Song L, Shu Y, Wang S, Niu J, Wang Z, Yu T, Gu W, Ma H. 2012. Comparative proteomic analysis of plants leaves of different salt tolerant soybean genotypes. J. Proteomics 75: 1529–1546, doi: 10.1016/j.jprot.2011.11.026.PubMedCrossRefGoogle Scholar
  24. Maliks SV, Kalia V, Pundir CS. 2000. Immobilization of porcine pancreas lipase on zirconia coated alkyl amine glass using glutaraldehyde. Ind. J. Chem. Technol. 7: 64–67, doi: Scholar
  25. McDonald M.B. 2000. Seed priming. In: Seed technology and its biological basis. Black M and Bewley JD (eds), Sheffield Academic Press, England, pp 287–325Google Scholar
  26. Metwally RA, Abdelhameed RE. 2018. Synergistic effect of arbuscular mycorrhizal fungi on growth and physiology of salt-stressed Trigonella foenum-graecum plants. Biocat. Agric. Biotech. 16: 538–544, CrossRefGoogle Scholar
  27. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stress. Plant Cell Environ. 33: 453–467, doi:10.1111/j.1365-3040.2009.02041.xPubMedCrossRefGoogle Scholar
  28. Miransari M, Smith DL. 2014. Plant hormones and seed germination. Envy. Exp. Bot. 99: 110–121, doi: CrossRefGoogle Scholar
  29. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9: 490–498, doi: 10.1016/j.tplants.2004.08.009PubMedCrossRefGoogle Scholar
  30. Mushtaq A, Jamil N, Riaz M, Hornyak GL, Ahmed N, Shabbir S, Shahwani MN, Malghani MNK. 2017. Synthesis of silica nanoparticles and their effect on priming of wheat (Triticum aestivum L.) under salinity stress. Biol. Forum Inter. J. 9: 150–157Google Scholar
  31. Mustafa HSB, Mahmood T, Ullah A, Sharif A, Bhatti AN, Nadeem M, Ali R. 2017. Role of seed priming to enhance growth and development of crop plants against biotic and abiotic stresses. Bull. Boil. Allied. Sci. Res. 2: 1–11Google Scholar
  32. Naguib DM. 2018. Control of Fusarium wilt in wheat seedlings by grain priming with defensin-like protein. Egy. J. Biol. Pest Cont. 28: 68, doi: CrossRefGoogle Scholar
  33. Naguib DM. 2019. Metabolic profiling during germination of hydro primed cotton seeds. Biocatal. Agric. Biotech. 17: 422–426, doi: CrossRefGoogle Scholar
  34. Ooi TEK, Yeap WCh, Daim LDJ, Ng BZ, Lee FCh, Othman AM, Appleton DR, Chew FT, Kulaveerasingam H. 2015. Differential abundance analysis of mesocarp protein from highand low-yielding oil palms associates non-oil biosynthetic enzymes to lipid biosynthesis. Proteome Sci. 13: 1–15, doi: CrossRefGoogle Scholar
  35. Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L. 2008. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20, 2729–2745, doi: Scholar
  36. Rao KS, El-Hami K, Kodaki T, Matsushige K, Makino K. 2005. A novel method for synthesis of silica nanoparticles. J. Coll. Inter. Sci. 289(1): 125–131, 10.1016/j.jcis.2005.02.019CrossRefGoogle Scholar
  37. Rashid A, Hollington PA, Harris D, Khana D. 2006. On-farm seed priming for barley on normal, saline and saline–sodic soils in North West Frontier Province, Pakistan. Eur. J. Agron. 24: 276–281, doi: 10.1016/j.eja.2005.10.006CrossRefGoogle Scholar
  38. Sadeghian SY, Yavari N. 2004. Effect of water deficit stress on germination and early seedling growth in sugar beet. J. Agron. Crop Sci. 190: 138–144, doi: CrossRefGoogle Scholar
  39. Saroop S, Chanda SV, Singh YD. 2002. Changes in soluble and ionically bound peroxidase activities during Brassica juncea seed development. Bull. J. Plant Physiol. 28: 26–34Google Scholar
  40. Sebei K, Debez A, Herchi W, Boukhchina S, Kallel H. 2007. Germination kinetics and seed reserve mobilization in two flax (Linum usitatissimum L.) cultivars under moderate salt stress. J. Plant Biol. 50: 447, CrossRefGoogle Scholar
  41. Shabbir I, Ayub M, Tahir M, Bilal M, Tanveer A, Hussain M, Afzal M. 2014. Impact of priming techniques on emergence and seedling growth of sesame (sesamum indicum l.) Genotypes. Sci. Agri. 1(3): 92–96, doi: 10.15192/PSCP.SA.2014.1.3.9296Google Scholar
  42. Siddiqui MH, Al-Whaibi MH. 2014. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saud. J. Biol. Sci. 21(1): 13–17, doi: 10.1016/j.sjbs.2013.04.005CrossRefGoogle Scholar
  43. Varier A, Kuriakose VAK, Dadlanim M. 2010. The subcellular basis of seed priming. Curr. Sci. 99: 450–456Google Scholar
  44. Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Ann. Rev. Plant Biol. 59: 225–251, doi: 10.1146/annurev.arplant.59.032607.092804CrossRefGoogle Scholar
  45. Zaki F. 2011. The determinants of salinity tolerance in maize (Zea mays L.). Ph.D. Thesis. University of Groningen, Groningen in the NetherlandsGoogle Scholar

Copyright information

© Korean Society of Crop Science and Springer 2019

Authors and Affiliations

  1. 1.Botany and Microbiology Department, Faculty of ScienceZagazig UniversityZagazigEgypt

Personalised recommendations