Journal of Crop Science and Biotechnology

, Volume 22, Issue 3, pp 253–264 | Cite as

Impact of Zinc Stress on Biochemical and Biophysical Parameters in Coffea Arabica Seedlings

  • Jacqueline Oliveira dos SantosEmail author
  • Cinthia Aparecida Andrade
  • Kamila Rezende Dázio de Souza
  • Meline de Oliveira Santos
  • Isabel Rodrigues Brandão
  • Jose Donizeti Alves
  • Iasminy Silva Santos
Research Article


Zinc is an essential micronutrient for the healthy development of plants, since its insufficient and supraoptimal doses can disrupt the metabolism and biomass production. We aimed to investigate the physiological responses of coffee seedlings to Zn deficiency and excess. Six-month-old seedlings were transferred to plastic pots containing a nutrient solution. The treatments were control (0.03 ppm), zinc deficiency (0.00 ppm), and zinc excess (0.12 ppm). The evaluations were performed in leaves and roots at the beginning of the treatments and after 30 and 60 d of treatments. Zn deficiency and excess increased the production of hydrogen peroxide, antioxidant enzymes activity, ascorbate, and lipid peroxidation contents. The imbalance in zinc nutrition reduced total chlorophyll content and increased carotenoids content throughout the experimental period. Lower biomass and proline accumulation were observed only for deficient seedlings at the end of the experiment. The characteristics analyzed showed that zinc deficiency caused greater damage to the Coffea arabica plants of (Catuaí cultivar) than zinc excess.

Key words

Plant nutrition coffee antioxidant metabolism proline plant growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We especially thank the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for funding and Dr. João Paulo R. Alves Delfino Barbosa for assisting us in this project.


  1. Alia Prasad KVSK, Saradhi PP. 1995. Effect of zinc on free radicals and proline in Brassica juncea and Cajanus cajan. Phytochemistry 39: 45–47CrossRefGoogle Scholar
  2. Alvarez-Flores R, Winkel T, Nguyen-Thi-Truc A, Joffre R. 2014. Root foraging capacity depends on root system architecture and ontogeny in seedlings of three Andean Chenopodium species. Plant Soil 380(1-2): 415–428CrossRefGoogle Scholar
  3. Andrade SAL, Gratão PL, Schiavinato MA, Silveira APD, Azevedo RA, Mazzafera P. 2009. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75: 1363–1370CrossRefGoogle Scholar
  4. Arakawa N, Tsutsumi K, Sanceda NG, Kurata T, Inagaki C. 1981. A Rapid and Sensitive Method for the Determination of Ascorbic Acid using 4,7-Diphenyl-l,10-phenanthroline. Agric. Biol. Chem. 45(5): 1289–1290Google Scholar
  5. Aravind P, Prasad MN. 2004. Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L., a freshwater macrophyte. Plant Sci. 166(5): 1321–1327CrossRefGoogle Scholar
  6. Bandurska H, Niedziela J, Pietrowska-Borek M, Nuc K, Chadzinikolau T, Radzikowska D 2017. Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L.) genotypes of different origin. Plant Physiol. 118: 427–437Google Scholar
  7. Biemelt S, Keetman U, Albrecht G. 1998. Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiol. 116(2): 651–658CrossRefGoogle Scholar
  8. Blasco B, Graham NS, Broadley MR. 2015. Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply. J. Plant Physiol. 176: 16–24CrossRefGoogle Scholar
  9. Cakmak I, Torun B, Erenoğlu B, Öztürk L, Marschner H, Kalayci M, et al. 1998. Morphological and hysiological differences in the response of cereals to zinc deficiency. Euphytica 100: 349–357CrossRefGoogle Scholar
  10. Cakmak, I. 2000. Tansley Review No. 111 Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 146(2): 185–205CrossRefGoogle Scholar
  11. Caldelas C, Dong S, Araus JL, Jakob Weiss D. 2010. Zinc isotopic fractionation in Phragmites australis in response to toxic levels of zinc. J. Exp. Bot. 62(6): 2169–2178CrossRefGoogle Scholar
  12. Cherif J, Derbel N, Nakkach M, von Bergmann H, Jemal F, Lakhdar ZB. 2010. Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress. J. Photochem. Photobiol. B: Biol. 101(3): 332–339CrossRefGoogle Scholar
  13. Chu W, Gao H, Chen H, Fang X, Zheng Y. 2018. Effects of cuticular wax on the postharvest quality of blueberry fruit. Food Chem. 239, 68–74CrossRefGoogle Scholar
  14. Clemente JM. 2014. Boron, copper and zinc effects on photosynthesis, enzymatic activity, nutritional status, production, chemical composition and cup quality of coffee. PhD diss., Universidade Federal de Viçosa, ViçosaGoogle Scholar
  15. Clemente JM, Martinez HEP, Pedrosa AW, Poltronieri Neves Y, Cecon PR, Jifon JL. 2018. Boron, copper, and zinc affect the productivity, cup quality, and chemical compounds in coffee beans. J. Food Qual. 201: 1–14CrossRefGoogle Scholar
  16. Epstein E, Bloom AP. 2006. Princípios e perspectivas. Ed2.: Planta LondrinaGoogle Scholar
  17. Faquin V. 2002. Diagnose do estado nutricional das plantas. Lavras: UFLA/FAEPE, 1, 77Google Scholar
  18. Feigl G, Lehotai N, Molnár Á, Ördög A, Rodríguez-Ruiz M, Palma JM, et al. 2014. Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann. Bot. 116(4): 613–25CrossRefGoogle Scholar
  19. Ferreira DF. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia. FapUNIFESP (Scielo), Dec;35(6): 1039–42Google Scholar
  20. Frei M, Wang Y, Ismail AM, Wissuwa M. 2010. Biochemical factors conferring shoot tolerance to oxidative stress in rice grown in low zinc soil. Funct. Plant Biol. 37(1): 74CrossRefGoogle Scholar
  21. Fu C, Li M, Zhang Y, Zhang Y, Yan Y, Wang Y. 2015. Morphology, photosynthesis, and internal structure alterations in field apple leaves under hidden and acute zinc deficiency. Sci. Hort. 193: 47–54CrossRefGoogle Scholar
  22. Giannopolitis CN, Ries SK. 1997. Superoxide Dismutases: I. Occurrence in higher plants. Plant Physiol. 59(2): 309–14CrossRefGoogle Scholar
  23. Gill SS, Tuteja N. 2010, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12): 909–30CrossRefGoogle Scholar
  24. Guimarães RJ, Mendes ANG, Souza CAS. 2002. Cafeicultura. Lavras: UFLA/FAEPEGoogle Scholar
  25. Hashemi SA. 2018. Studying the effects of heavy metal on chlorophyll a nd sugar in one year-old seedlings organs of Acer velutinum specie. Acta Ecol. 38(3): 224–7CrossRefGoogle Scholar
  26. Havaux M. 2013. Carotenoid oxidation products as stress signals in plants. Plant J. 79(4): 597–606CrossRefGoogle Scholar
  27. Havir EA, McHale NA. 1987. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol. 84(2): 450–5CrossRefGoogle Scholar
  28. Hildebrandt TM, Nunes Nesi A, Araújo WL, Braun H-P. 2015. Amino acid catabolism in plants. Mol. Plant 8(11): 1563–79CrossRefGoogle Scholar
  29. Hoagland DR, Arnon DI. 1950. The water culture method for growing plants without soil. Calif. Agric. Exp. Stat.. 347:1–32Google Scholar
  30. Höller S, Meyer A, Frei M. 2014. Zinc deficiency differentially affects redox homeostasis of rice genotypes contrasting in ascorbate level. J. Plant Physiol. 171(18): 1748–56CrossRefGoogle Scholar
  31. Islam F, Yasmeen T, Riaz M, Arif MS, Ali S, Raza SH. 2014. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicol. Environ. Saf 110: 143–52CrossRefGoogle Scholar
  32. Jain R, Srivastava S, Solomon S, Shrivastava AK, Chandra A. 2010. Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol. Plant. Mar 30;32(5): 979–86CrossRefGoogle Scholar
  33. Jaleel CA, Manivannan P, Lakshmanan GMA, Gomathinayagam M, Panneerselvam R 2008. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids and Surfaces B: Biointerfaces 61(2): 298–303CrossRefGoogle Scholar
  34. Jiang K, Wu B, Wang C, Ran Q. 2019. Ecotoxicological effects of metals with different concentrations and types on the morphological and physiological performance of wheat. Ecotoxicol. Environ. Saf. 167: 345–353CrossRefGoogle Scholar
  35. Karuppanapandian TJC, Moon C, Kim K, Kim W. 2011. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust. J. Crop Sci. 5(6): 709Google Scholar
  36. Kishor P, Hong Z, Miao GH, Hu C, Verma D. 1995. Over-expression of 1- pyrroline-5-carboxylate synthetase increases proline overproduction and confers osmotolerance in transgenic plants. Plant Physiol. 108(4): 1387–1394CrossRefGoogle Scholar
  37. Lee J-S, Wissuwa M, Zamora OB, Ismail AM. 2017. Biochemical indicators of root damage in rice (Oryza sativa) genotypes under zinc deficiency stress. J. Plant Res. 130(6): 1071–1077CrossRefGoogle Scholar
  38. Li X, Yang Y, Jia L, Chen H, Wei X. 2013. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol. Environ. Saf. 89: 150–157CrossRefGoogle Scholar
  39. Liang XL, Zhang SK. Natarajan, Becker DF. 2013. Proline mechanisms of stress survival. Antioxidants Redox Signal 19(9): 998–1011CrossRefGoogle Scholar
  40. Lichtenthaler HK, Buschmann C. 2001. chlorophylls and carotenoids: measurement and characterization by uv-vis spectroscopy. CPFAC 1(1): F4.3.1–F4.3.8Google Scholar
  41. Malavolta E. 1997. Avaliação do estado nutricional das plantas: princípios e aplicações. 2. ed. Piracicaba: PotafosGoogle Scholar
  42. Mattiello EM, Ruiz HA, Neves JCL, Ventrella MC, Araújo WL. 2015. Zinc deficiency affects physiological and anatomical characteristics in maize leaves. J. Plant Physiol. 183: 138–143CrossRefGoogle Scholar
  43. Michael PI, Krishnaswamy M. 2011. The effect of zinc stress combined with high irradiance stress on membrane damage and antioxidative response in bean seedlings. Environ. Exp. Bot. 74: 171–177CrossRefGoogle Scholar
  44. Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell PhysiolGoogle Scholar
  45. Nazarbeygi E, Yazdi HL, Naseri R, Soleimani R. 2011. The effects of different levels of salinity on proline and A-, B-chlorophylls in Canola. Amer.-Eur. J. Agric. Environ. Sci. 10: 70–74Google Scholar
  46. Noctor G, Mhamdi A, Foyer CH. 2014. The roles of reactive Oxygen metabolism in drought: Not so cut and dried. Plant Physiol. 164(4): 1636–1648CrossRefGoogle Scholar
  47. Noctor G, Reichheld J-P, Foyer CH. 2018. ROS-related redox regulation and signaling in plants. Sem. Cell Dev. Biol. 80: 3–12CrossRefGoogle Scholar
  48. Ozdener Y, Aydin BK. 2009. The effect of zinc on the growth and physiological and biochemical parameters in seedlings of Eruca sativa (L.) (Rocket). Acta Physiol. Plant. 32(3): 469–476CrossRefGoogle Scholar
  49. Paunov M, Koleva L, Vassilev A, Vangronsveld J, Goltsev V. 2018. Effects of different metals on photosynthesis: Cadmium and zinc affect chlorophyll fluorescence in Durum Wheat. Int. J. Mol. Sci. 19(3): 787CrossRefGoogle Scholar
  50. Pavlíková D, Pavlík M, Staszková L, Motyka V, Száková J, Tlustoš P, et al. 2008. Glutamate kinase as a potential biomarker of heavy metal stress in plants. Ecotoxicol. Environ. Saf. 70(2): 223–230CrossRefGoogle Scholar
  51. Peever TL, Higgins VJ. 1989. Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and nonspecific elicitors from Cladosporium fulvum. Plant Physiol. 90(3): 867–875CrossRefGoogle Scholar
  52. Prasad MNV. 2004. Heavy metal stress in plants: From Bio-molecules to ecosystem. 2a ed. Springer-Verlag, Heidelberg, Narosa, New DelhiCrossRefGoogle Scholar
  53. Rizvi A, Khan MS. 2018. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicol. Environ. Saf. 157: 9–20CrossRefGoogle Scholar
  54. Rout GR, Das P. 2009. Effect of metal toxicity on plant growth and metabolism: I. Zinc. Sust. Agric. 873–884CrossRefGoogle Scholar
  55. Santos JO, Fária ME, Silva DM, Silveira HR, Campos CN, et al. 2017. Copper (Cu) stress affects carbon and antioxidant metabolism in Coffea arabica seedlings. Aust. J. Crop Sci. 11(08): 960–967CrossRefGoogle Scholar
  56. Sharma SS, Dietz KJ. 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 57(4): 711–726CrossRefGoogle Scholar
  57. Soltanghei A, Rahman ZA, Ishak CF, Musa HM, Zakikhani H. 2014. Effect of Zinc and Phosphorus supply on the activity of carbonic anhydrase and the ultrastructure of chloroplast in sweet corn (Zea mays var. saccharata). Asian J. Plant Sci. 13(2): 51–58CrossRefGoogle Scholar
  58. Torello WA, Rice LA. 1986. Effects of NaCl stress on proline and cation accumulation in salt sensitive and tolerant turfgrasses. Plant Soil 93(2): 241–247CrossRefGoogle Scholar
  59. Vaillant N, Monnet F, Hitmi A, Sallanon H, Coudret A. Coudret. 2005. Comparative study of responses in four Datura species to zinc stress. Chemosphere 59(7): 1005–1013CrossRefGoogle Scholar
  60. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, et al. 2009. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ. Sci. Pollut. Res. 16(7): 765–794CrossRefGoogle Scholar
  61. Vassilev AA, Nikolova L, Koleva, Lidon F. 2011. effects of excess zn on growth and photosynthetic performance of young bean plants. J. Phytol. 3: 58–62Google Scholar
  62. Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid raintreated bean plants: protective role of exogenous polyamines. Plant Sci. 151: 59–66CrossRefGoogle Scholar
  63. Zabini AV, Martinez, HEP, Finger FL, Silva CA. 2007. Con-centração de micronutrientes e características bioquímicas de progênies de cafeeiros (Coffea arabica L.) eficientes no uso de zinco. Biosci. J. 23(4): 95–103Google Scholar

Copyright information

© Korean Society of Crop Science and Springer 2019

Authors and Affiliations

  • Jacqueline Oliveira dos Santos
    • 1
    Email author
  • Cinthia Aparecida Andrade
    • 1
  • Kamila Rezende Dázio de Souza
    • 1
  • Meline de Oliveira Santos
    • 2
  • Isabel Rodrigues Brandão
    • 1
  • Jose Donizeti Alves
    • 1
  • Iasminy Silva Santos
    • 1
  1. 1.Setor de Fisiologia Vegetal, Departamento de BiologiaUniversidade Federal de LavrasLavrasBrasil
  2. 2.Empresa de Pesquisa Agropecuária de Minas Gerais/ EPAMIG SULLavrasBrasil

Personalised recommendations