Advertisement

Journal of Crop Science and Biotechnology

, Volume 22, Issue 1, pp 11–16 | Cite as

Reduced Germination and Seedling Vigor of Weeds with Root Extracts of Maize and Soybean, and the Mechanism Defined as Allelopathic

  • Sanjeev Kumar Dhungana
  • Il-Doo Kim
  • Bishnu Adhikari
  • Jeong-Ho Kim
  • Dong-Hyun ShinEmail author
Research Article
  • 38 Downloads

Abstract

Due to the negative consequences of synthetic herbicides use and their reducing effectiveness due to development of resistant weeds, promotion of eco-friendly weed management approaches is emphasized. Weed suppression by intercropping is basically attributed to increasing competition between the crop plants and weeds and/or the allelopathy effect of some crop plants. The effect of root extracts of maize or soybean on beggarticks and goosegrass weeds, as well as the effect of sole cropping of corn or soybean on weed occurrence and growth were investigated. The germination and seedling vigor of the two weeds were significantly (P < 0.05) inhibited with the maize root extract compared to those with soybean. Similarly, 420.52% low amount of fresh weeds was collected from the maize-grown pots (37.03 g) compared to that of the soybean-grown pots (155.72 g). The results of this study revealed that intercropping of soybean with maize could be an effective option to reduce the weed problem although comprehensive field studies are necessary for practical applications.

Key words

Allelopathy maize root extract poor seedling vigor reduced germination weed management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn J, Hahn S, Kim J, Khanh T, Chung I. 2005. Evaluation of allelopathic potential among rice (Oryza sativa L.) germplasm for control of Echinochloa crusgalli (L.) P. Beauv in the field. Crop Prot. 24: 413–9CrossRefGoogle Scholar
  2. Ayeni MJ, Kayode J. 2014. Laboratory studies on the effects of aqueous extracts from Sorghum bicolor stem and Zea mays (roots and tassel) on the germination and seedling growth of okra (Abelmoschus esculentus L.). Adv. Agr. 958503Google Scholar
  3. Ayeni MJ, Kayode J. 2013. Allelopathic effects of extracts from maize roots and rice husks’ residues on the germination and growth of Bidens pilosa L. J. Agric. Sci. 5: 146–52Google Scholar
  4. Bajgai Y, Kristiansen P, Hulugalle N, McHenry M. 2015. Comparison of organic and conventional managements on yields, nutrients and weeds in a corn—cabbage rotation. Renew. Agr. Food Syst. 30: 132–42CrossRefGoogle Scholar
  5. Batish RD, Lavanya K, Singh HP, Kohli RK. 2007. Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Regul. 51: 119–128CrossRefGoogle Scholar
  6. Cao M, Li S, Wang Q, Wei P, Liu Y, Zhu G, Wang M. 2015. Track of fate and primary metabolism of trifloxystrobin in rice paddy ecosystem. Sci. Total Environ. 518: 417–23CrossRefGoogle Scholar
  7. Carruthers KFEQ, Fe Q, Cloutier D, Smith DL. 1998. Intercropping corn with soybean, lupin and forages: weed control by intercrops combined with interrow cultivation. Eur. J. Agron. 8: 225–38CrossRefGoogle Scholar
  8. Cheema ZA, Khaliq A. 2000. Use of sorghum allelopathic properties to control weeds in irrigated wheat in a semi-arid region of Punjab. Agr., Ecosyst. Environ. 79: 105–12CrossRefGoogle Scholar
  9. Corre-Hellou G, Dibet A, Hauggaard-Nielsen H, Crozat Y, Gooding M, Ambus P, Dahlmann C, vonFragstein P, Pristeri A, Monti M, Jensen ES. 2011. The competitive ability of pea—barley intercrops against weeds and the interactions with crop productivity and soil N availability. Field Crops Res. 122: 264–72CrossRefGoogle Scholar
  10. Einhellig FA. 1996. Interactions involving allelopathy in cropping systems. Agron. J. 88: 886–93CrossRefGoogle Scholar
  11. Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, Mommer L. 2017. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7: 44641CrossRefGoogle Scholar
  12. Far MH, Bagherzadeh A. 2018. Assessing allelopathic index for estimating allelopathic potential of ajowan extracts. J. Crop Sci. Biotech. 21: 165–72CrossRefGoogle Scholar
  13. Gallandt ER, Liebman M, Huggins DR. 1999. Improving soil quality: implications for weed management. J. Crop Prod. 2: 95-21Google Scholar
  14. Galon L, Forte CT, Gabiatti RL, Radunz LL, Aspiazu I, Kujawinski R, David FA, Castoldi CT, Perin GF, Radunz AL, Rossetti J. 2016. Interference and economic threshold level for control of beggartick on bean cultivars. Planta Daninha 34: 411–22CrossRefGoogle Scholar
  15. Ghaffarzadeh M, Prechac FG, Cruse RM. 1994. Grain yield response of corn, soybean, and oat grown in a strip intercropping system. Am. J. Altern. Agr. 9: 171–7CrossRefGoogle Scholar
  16. Ghosh PK, Tripathi AK, Bandyopadhyay KK, Manna MC. 2009. Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system. Eur. J. Agron. 31: 43-0CrossRefGoogle Scholar
  17. Gianessi LP. 2013. The increasing importance of herbicides in worldwide crop production. Pest Manage. Sci. 69: 1099–105CrossRefGoogle Scholar
  18. Guenzi WD, McCalla TM, Norstadt FA. 1967. Presence and persistence of phytotoxic substances in wheat, oat, corn, and sorghum residues. Agron. J. 59: 163–5CrossRefGoogle Scholar
  19. Hartwig NL, Ammon HU. 2002. Cover crops and living mulches. Weed Sci. 50: 688–99CrossRefGoogle Scholar
  20. Hauggaard-Nielsen H, Ambus P, Jensen ES. 2001. Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crops Res. 70: 101–9CrossRefGoogle Scholar
  21. Heap I. 2014. Global perspective of herbicide-resistant weeds. Pest Manage. Sci. 70: 1306–15CrossRefGoogle Scholar
  22. Huber DM, Abney TS. 1986. Soybean allelopathy and subsequent cropping. J. Agron. Crop Sci. 157: 73–8CrossRefGoogle Scholar
  23. Iman A, Wahab Z, Rastan SO, Halim MR. 2006. Allelopathic effect of sweet corn and vegetable soybean extracts at two growth stages on germination and seedling growth of corn and soybean varieties. J. Agron. 5: 62–8CrossRefGoogle Scholar
  24. Inderjit, Mallik AU. 2002. Can Kalmia angustifolia interference to black spruce (Picea mariana) be explained by allelopathy? Forest Ecol. Manage. 160: 75–84CrossRefGoogle Scholar
  25. Jabran K. 2017. Maize allelopathy for weed control, In K Jabran, eds, Manipulation of Allelopathic Crops for Weed Control, Springer International Publishing, Switzerland, pp 29–34CrossRefGoogle Scholar
  26. Kato-Noguchi H. 2000. Allelopathy in maize II: Allelopathic potential of a new benzoxazolinone, 5-chloro-6-methoxy-2-benzoxazolinone and its analogue. Plant Prod. Sci. 3: 47–50CrossRefGoogle Scholar
  27. Kato-Noguchi H, Sakata Y, Takenokuchi K, Kosemura S, Yamamura S. 2000. Allelopathy in maize I: Isolation and identification of allelochemicals in maize seedlings. Plant Prod. Sci. 3: 43–6CrossRefGoogle Scholar
  28. Kuchinda NC, Kureh I, Tarfa BD, Shinggu C, Omolehin R. 2003. On-farm evaluation of improved maize varieties intercropped with some legumes in the control of Striga in the Northern Guinea savanna of Nigeria. Crop Prot. 22: 533–8CrossRefGoogle Scholar
  29. Li XG, Zhang TL, Wang XX, Hua K, Zhao L, Han ZM. 2013. The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. Int. J. Biol. Sci. 9: 164–73CrossRefGoogle Scholar
  30. Liebman M, Dyck E. 1993. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 3: 92–122CrossRefGoogle Scholar
  31. Lu MX, Jiang WW, Wang JL, Jian Q, Shen Y, Liu XJ, Yu XY. 2014. Persistence and dissipation of chlorpyrifos in brassica chinensis, lettuce, celery, asparagus lettuce, eggplant, and pepper in a greenhouse. PloS One 9: e100556CrossRefGoogle Scholar
  32. Mahajan G, Chauhan BS. 2013. The role of cultivars in managing weeds in dry-seeded rice production systems. Crop Prot. 49: 52–7CrossRefGoogle Scholar
  33. Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, Tourdonnet S, Valantin-Morison M. 2009. Mixing plant species in cropping systems: concepts, tools and models: A review, In E Lichtfouse, M Navarrete, P Debaeke, S Véronique, C Alberola, eds, Sustainable Agriculture, Springer Netherlands, Dordrecht, pp 329–53CrossRefGoogle Scholar
  34. Marchiol L, Miceli F, Pinosa M, Zerbi G. 1992. Intercropping of soybean and maize for silage in northern Italy: effect of nitrogen level and plant density on growth, yield and protein content. Eur. J. Agron. 1: 207–11CrossRefGoogle Scholar
  35. McCallum ML, Matlock M, Treas J, Safi B, Sanson W, McCallum JL. 2013. Endocrine disruption of sexual selection by an estrogenic herbicide in the mealworm beetle (Tenebrio molitor). Ecotoxicology 22: 1461–6CrossRefGoogle Scholar
  36. Mwendwa JM, Brown WB, Wu H, Weston PA, Weidenhamer JD, Quinn JC, Weston LA. 2018. The weed suppressive ability of selected Australian grain crops; case studies from the Riverina region in New South Wales. Crop Prot. 103: 9–19CrossRefGoogle Scholar
  37. Pareja L, Colazzo M, Pérez-Parada A, Besil N, Heinzen H, Böcking B, Cesio V, Fernández-Alba AR. 2012. Occurrence and distribution study of residues from pesticides applied under controlled conditions in the field during rice processing. J. Agric. Food Chem. 60: 4440–8CrossRefGoogle Scholar
  38. Rice EL. 1984. Allelopathy. Academic Press, Orlando, New YorkGoogle Scholar
  39. Rose SJ, Burnside OC, Specht JE, Swisher BA. 1984. Competition and allelopathy between soybeans and weeds. Agron. J. 76: 523–8CrossRefGoogle Scholar
  40. Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A. 2008. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Res. 108: 1–13CrossRefGoogle Scholar
  41. Santos FLS, Teixeira I, Timossi PC, Silverio JGD, Benett CGS. 2017. Phytosociological survey of weed plants in intercrops of common beans and castor beans. Planta Daninha 35: e017162166CrossRefGoogle Scholar
  42. Setia N, Batish DR, Singh HP, Kohli RK. 2007. Phytotoxicity of volatile oil from Eucalyptus citriodora against some weedy species. J. Environ. Biol. 28: 63–6Google Scholar
  43. Tanveer A, Safdar ME, Suleman M, Tahir M, Zamir SI, Nadeem MA. 2015. Assessing the potential of the water soluble allelopaths of Marsilea minuta in rice and wheat. Planta Daninha 33: 231–9CrossRefGoogle Scholar
  44. Tawaha AM, Turk MA. 2003. Allelopathic effects of black mustard (Brassica nigra) on germination and growth of wild barley (Hordeum spontaneum). J. Agron. Crop Sci. 189: 298–303CrossRefGoogle Scholar
  45. van Staden J, Sparg SG, Kulkarni MG, Light ME. 2006. Post-germination effects of the smoke-derived compound 3-methyl-2H-furo [2, 3-c] pyran-2-one, and its potential as a preconditioning agent. Field Crops Res. 98: 98–105CrossRefGoogle Scholar
  46. Watiki JM, Fukai S, Banda JA, Keating BA. 1993. Radiation interception and growth of corn/cow pea intercrop as affected by corn plant density and cowpea cultivar. Field Crops Res. 35: 123–33CrossRefGoogle Scholar
  47. West TD, Griffith DR. 1992. Effect of strip-intercropping corn and soybean on yield and profit. J. Prod. Agr. 5: 107–10CrossRefGoogle Scholar
  48. Weston LA. 1996. Utilization of allelopathy for weed management in agroecosystems. Agron. J. 88: 860–6CrossRefGoogle Scholar
  49. Wezel A, Casagrande M, Celette F, Vian J-F, Ferrer A, Peigné J. 2014. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Develop. 34: 1–20CrossRefGoogle Scholar

Copyright information

© Korean Society of Crop Science and Springer 2019

Authors and Affiliations

  • Sanjeev Kumar Dhungana
    • 1
  • Il-Doo Kim
    • 2
  • Bishnu Adhikari
    • 1
  • Jeong-Ho Kim
    • 3
  • Dong-Hyun Shin
    • 1
    Email author
  1. 1.School of Applied BiosciencesKyungpook National UniversityDaeguKorea
  2. 2.International Institute of Research & DevelopmentKyungpook National UniversityDaeguKorea
  3. 3.Department of Green Technology ConvergenceKonkuk UniversityChungcheongbuk-doKorea

Personalised recommendations