Advertisement

Journal of Crop Science and Biotechnology

, Volume 21, Issue 4, pp 395–405 | Cite as

Development of a Core Collection Based on EST-SSR Markers and Phenotypic Traits in Foxtail Millet [Setaria italica (L.) P. Beauv.]

  • Yu-Mi Choi
  • Kyung-Min Kim
  • Sukyeung Lee
  • Sejong Oh
  • Myung-Chul Lee
Research Article
  • 3 Downloads

Abstract

The germplasm resources of foxtail millet reserve diverse genes for crop improvement which needs to be explored. To comprehend the maximum genetic diversity of this crop, a core collection with minimum number of accessions will facilitate easy access to genetic material. Here we assessed the genetic diversity and population structure in a large germplasm collection of 785 accessions by employing EST-SSR markers and morphological traits. A total of 107 alleles were detected with an average allele number of 4.9 per locus among the 785 accessions based on 22 EST-SSR markers. The number of alleles per locus ranged from 2 to 8. Polymorphism information content and expected heterozygosity ranged from 0.355 to 0.738 (mean = 0.525) and 0.451 to 0.771 (mean = 0.603), respectively. The germplasm collection was separated into three groups based on population structure analysis, whereas principal coordinate analysis (PCoA) could not cluster accessions according to their geographic origin. Subsequently, a core collection with a total of 170 accessions (21.66%) was selected from the whole set of germplasm by combining allelic variations of 22 EST-SSR markers and eight different phenotypic traits. The core collection optimally represented the whole germplasm collection and displayed a similar level of genetic diversity, population structure, and phenotypic variations based on various genetic analyses such as Shannon-Weaver and Nei’s diversity indices and PCoA, while phenotypic traits were analyzed by mean, range, and principal component analysis. This core collection of foxtail millet will be a primary resource for further genetic analysis and development of appropriate breeding strategies.

Key words

Foxtail millet core collection genetic diversity EST-SSR population structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali A, Choi YM, Hyun DY, Lee S, Oh S, Park HJ, Cho YH, Lee MC. 2016. EST–SSR based genetic diversity and population structure among Korean landraces of foxtail millet (Setaria italica L.). Korean J. Plant Res. 29(3): 322–330CrossRefGoogle Scholar
  2. Ahanchede A, Hamon SP, Darmency H. 2004. Why no tetraploid cultivar of foxtail millet? Genet. Resour. Crop Ev. 51: 227–230CrossRefGoogle Scholar
  3. Austin DF. 2006. Foxtail millets (Setaria: Poaceae)–Abandoned food in two hemispheres. Econ. Bot. 60: 143–158CrossRefGoogle Scholar
  4. Balfourier F, Roussel V, Strelchenko P, Exbrayat–Vinson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M, Charmet G. 2007. A worldwide bread wheat core collection arrayed in a 384–well plate. Theor. Appl. Genet. 114: 1265–1275CrossRefGoogle Scholar
  5. Belaj A, Dominguez–Garcia MD, Atienza SG, Urdiroz NM, De la Rosa R, Satovic Z, Martin A, Kilian A, Trujillo I, Valpuesta V, Rio CD. 2012. Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet. Genomes 8(2): 365–378CrossRefGoogle Scholar
  6. Brown AHD. 1989. Core collections: a practical approach to genetic resources management. Genome, 31: 818–824CrossRefGoogle Scholar
  7. Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S. 2000. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100: 713–722CrossRefGoogle Scholar
  8. Cho YI, Chung JW, Lee GA, Ma KH, Dixit A, Gwag JG, Park YJ. 2010. Development and characterization of twenty–five new polymorphic microsatellite markers in proso millet (Panicum miliaceum L.). Genes Genom. 32: 267–273CrossRefGoogle Scholar
  9. Deb D. 2009. Valuing folk crop varieties for agroecology and food security, Bioscience Resource Project Commentaries. The Bioscience Resource Project, Inc., USA. http://indepen dentsciencenews.org/un–sustainable–farming/valuing–folk–cr op–varietiesGoogle Scholar
  10. Dekker J. 2003. Evolutionary biology of the foxtail (Setaria) species–group, In: Weed Biology and Management, Indrjit (ed.). Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  11. Dutta S, Kumawat G, Singh BP, Gupta DK, et al. 2011. Development of genic–SSR markers by deep transcriptome sequencing in pigeon pea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biol. 20: 11–17Google Scholar
  12. Dwivedi SL, Puppala N, Upadhyaya HD, Manivannan N, Singh S. 2008. Developing a core collection of peanut specific to Valencia market type. Crop Sci. 48: 625–632CrossRefGoogle Scholar
  13. Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611–2620CrossRefGoogle Scholar
  14. Falush D, Stephens M, Pritchard JK. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587Google Scholar
  15. Frankel OH. 1984. Genetic perspectives of germplasm conservation. In: W Arber, K Illmensee, WJ Peacock, and P Starlinger, eds., Genetic manipulation: impact on man and society, pp: 161–170. Cambridge University Press, Cambridge, UKGoogle Scholar
  16. Fukunaga K, Kawase M, Kato K. 2002. Structural variation in the waxy gene and differentiation in foxtail millet [Setaria italica (L.) P. Beauv.]: implications for multiple origins of the waxy phenotype. Mol. Genet. Genomics 268: 214–222Google Scholar
  17. Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK. 2010. Accessing genetic diversity for crop improvement. Curr. Opin. Plant Biol. 13: 1–7CrossRefGoogle Scholar
  18. Gupta S, Kumari K, Muthamilarasan M, Parida SK, Prasad M. 2014. Population structure and association mapping of yield contributing agronomic traits in foxtail millet. Plant Cell Rep. 33: 881–893CrossRefGoogle Scholar
  19. Gupta S, Kumari K, Sahu PP, Vidapu S, Prasad M. 2012. Sequence–based novel genomic microsatellite markers for robust genotyping purposes in foxtail millet [Setaria italic (L.) P. Beauv.]. Plant Cell Rep. 31: 323–337CrossRefGoogle Scholar
  20. Hammer Ø, Harper DAT, Ryan RD. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4: 1–9Google Scholar
  21. Hu X, Wang J, Lu P, Zhang H. 2009. Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. J. Genet. Genomics 36: 491–500CrossRefGoogle Scholar
  22. Jia XP, Shi YS, Song YC, Wang GY, Wang TY, Li Y. 2007. Development of EST–SSR in foxtail millet (Setaria italica). Genet. Resour. Crop Ev. 54: 233–236CrossRefGoogle Scholar
  23. Jia X, Zhang Z, Liu Y, Zhang C, Shi Y, Song Y, Wang T, Li Y. 2009. Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.]. Theor. Appl. Genet. 118: 821–829CrossRefGoogle Scholar
  24. Kapila RK, Yadav RS, Plaha P, Rai KN, Yadav OP, Hash CT, Howarth CJ. 2007. Genetic diversity among pearl millet maintainers using microsatellite markers. Plant Breed. 127: 33–37Google Scholar
  25. Kim EJ, Sa KJ, Park JC, Lee JK. 2012. Study of genetic diversity and relationship among accessions of foxtail millet [Setaria italica (L.) P. Beauv] in Korea, China, and Pakistan using SSR markers. Genes Genom.. 34: 529–538Google Scholar
  26. Kim EJ, Sa KJ, Yu CY, Lee JK. 2010. Morphological variation of foxtail millet (Setaria italica (L.) P. Beauv.) germplasm collected in Korea, China, Pakistan. Korean J. Breed. Sci. 42: 181–187Google Scholar
  27. Kim KW, Chung HK, Cho GT, Ma KH, Chandrabalan D, Gwag JD, Kim TS, Cho EG, Park YJ. 2007. Power Core: A program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23: 2155–2162CrossRefGoogle Scholar
  28. Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A, Parida SK, Chattopadhyay D, Prasad M. 2013. Development of eSSR–markers in Setaria italica and their applicability in studying genetic diversity, cross–transferability and comparative mapping in millet and non–millet species. PLoS One 8: e67742 doi: 10.1371/journal.pone.0067742CrossRefGoogle Scholar
  29. Le Thierry D’ennequin M, Panaud O, Toupance B. 2000. Assessment of genetic relationships between Setaria italica and its wild relatives S. viridis using AFLP marker. Theor. Appl. Genet. 100: 1061–1066CrossRefGoogle Scholar
  30. Li H, Li C, Pao W. 1945. Cytological and genetic studies of the interspecific cross of the cultivated foxtail millet, Setaria italica P. Beauv., and the green foxtail millet, S. viridis L. J. Amer. Soc. Agron. 9: 32–54CrossRefGoogle Scholar
  31. Li Y, Wu SZ, Cao YS. 1995. Cluster analysis of an international collection of foxtail millet (Setaria italica (L.) P. Beauv). Genet. Res. Crop Evol. 45: 279–285CrossRefGoogle Scholar
  32. Li Y, Wu SZ, Ji YF. 1991. Agronomic performances of foxtail millet germplasm from abroad and their prospect for utilization in China. Millet Crops 3: 15–19 (In Chinese)Google Scholar
  33. Lin HS, Liao GI, Chiang CY, Kuoh CS, Chang SB. 2012. Genetic diversity in the foxtail millet (Setaria italica) germplasm as determined by agronomic traits and microsatellite markers. Aust. J. Crop Sci. 6(2): 342–349Google Scholar
  34. Liu K, Muse M. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128–2129CrossRefGoogle Scholar
  35. Masud MAT, Chowdhury MAZ, Hossain MA, Hossain SMM. 1995. Multivariate analysis in pumpkin (Cucurbita moschata Dueh ex Poir). Bangladesh J. P1ant Breed. Genet. 8: 45–50Google Scholar
  36. Mondini L, Noorani A, Pagnotta MA. 2009. Assessing plant genetic diversity by molecular tools. Diversity 1: 19–35CrossRefGoogle Scholar
  37. Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P. 2004. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor. Appl. Genet. 109: 800–805CrossRefGoogle Scholar
  38. Ning N, Yuan X, Dong S, Wen Y, Gao Z, Guo M, Guo P. 2015. Grain yield and quality of foxtail millet (Setaria italica L.) in response to Tribenuron–methyl. PLoS One doi:10.1371/journal.pone.0142557CrossRefGoogle Scholar
  39. Peakall R, Smouse PE. 2006. GENEALEX 6; Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288–295Google Scholar
  40. Perrier X, Jacquemoud–Collet JP. 2006. Darwin software, http://darwin.cirad.fr/darwinGoogle Scholar
  41. Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959Google Scholar
  42. Saha MC, Mian MA, Eujayl I, Zwonitzer JC, Wang L, May GD. 2004. Tall fescue EST–SSR markers with transferability across several grass species. Theor. Appl. Genet. 109: 783–79CrossRefGoogle Scholar
  43. Schontz D, Rether B. 1999. Genetic variability in foxtail millet, Setaria italica (L.) P. Beauv: identification and classification of lines with RAPD markers. Plant Breed. 118: 190–192Google Scholar
  44. Song J, Lee G, Yoon M, Choi Y, Lee J, Jung Y, Park H, Kim C, and Lee M. 2011. Analysis of genetic diversity and population structure of buckwheat (Fagopyrum esculentum) landraces of Korea using SSR markers. Korean J. Plant Res. 24: 702–711CrossRefGoogle Scholar
  45. Tatineni V, Cantrell RG, Davis DD. 1996. Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Sci. 36: 186–192CrossRefGoogle Scholar
  46. Thiel T, Michalek W, Varshney RK, Graner A. 2003. Exploiting EST databases for the development of cDNA derived microsatellite markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106: 411–422CrossRefGoogle Scholar
  47. Upadhyaya HD, Pundir RPS, Gowda CLL, Reddy VG, Singh S. 2008. Establishing a core collection of foxtail millet to enhance the utilization of the germplasm of an underutilized crop. Plant Genet. Resour. 7: 177–184CrossRefGoogle Scholar
  48. Upadhyaya HD, Pundir PRS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S. 2009. Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci. 49: 1769–1780CrossRefGoogle Scholar
  49. van Hintum THJL, Brown AHD, Spillane C, and T Hodgkin. 2000. Core collections of plant genetic resources. IPGRI Tech. Bull. 3: 48Google Scholar
  50. Varshney RK, Graner A, Sorrells ME. 2005. Genic microsatellite markers in plants, features and applications. Trends Biotechnol. 23: 48–55CrossRefGoogle Scholar
  51. Victoria FC, Da Maia LC, De Oliveira AC. 2011. In silico comparative analysis of SSR markers in plants. BMC Plant Boil 11: 15. doi: 10.1186/1471–2229–11–15CrossRefGoogle Scholar
  52. Wang ZM, Devos KM, Liu CJ, Wang RQ, Gale MD. 1998. Construction of RFLP–based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theor. Appl. Genet. 96: 31–36CrossRefGoogle Scholar
  53. Wilson PJ, Thompson K, Hodgson JG. 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol. 143: 155–162CrossRefGoogle Scholar
  54. Yan W, Rutger JN, Bryant RJ, Bockelman HE, Fjellstrom RG, Chen MH, Tai TH, McClung AM. 2007. Development and evaluation of a core subset of the USDA rice germplasm collection. Crop Sci. 47: 869–878CrossRefGoogle Scholar
  55. Zhang B, Ye W, Ren D, Tian P, Peng Y, Gao Y, Ruan B, Wang L, Zhang G, Guo L, Qian Q, Z Gao. 2015. Genetic analysis of flag leaf size and candidate genes deteremination of a major QTL for flag leaf width in rice. Rice 8(1): 39. doi: 10.1186/s12284–014–0039–9CrossRefGoogle Scholar
  56. Zhang YF, Zhang QL, Yang Y, Luo ZR. 2009. Development of Japanese persimmon core collection by genetic distance sampling based on SSR markers. Biotechnol. Biotechnol. Equipment 23: 1474–1478CrossRefGoogle Scholar
  57. Zhao WG, Lee GA, Kwon SW, Ma KH, Lee MC, Park YJ 2012. Development and use of novel SSR markers for molecular genetic diversity in Italian millet (Setaria italica L.). Genes Genom. 34: 51–57CrossRefGoogle Scholar

Copyright information

© Korean Society of Crop Science (KSCS) and Springer Nature B.V. 2018

Authors and Affiliations

  • Yu-Mi Choi
    • 1
  • Kyung-Min Kim
    • 2
  • Sukyeung Lee
    • 1
  • Sejong Oh
    • 1
  • Myung-Chul Lee
    • 1
  1. 1.National Agrobiodiversity CenterNational Institute of Agricultural Science, RDAJeollabuk-doKorea
  2. 2.School of Applied BiosciencesKyungpook National UniversityDaeguKorea

Personalised recommendations