Conservation Genetics Resources

, Volume 11, Issue 3, pp 313–315 | Cite as

The complete plastome of Nyssa yunnanensis, a critically endangered tree species

  • Xuchen Yang
  • Yanting Yang
  • Minghui Kang
  • Xinyi Guo
  • Tao Ma
  • Zhenxiang XiEmail author
Technical Note


Nyssa yunnanensis is a critically endangered species endemic to China. Here, we assembled and characterized the plastome of N. yunnanensis using Illumina paired-end data. The assembled plastome is 156,544 base pairs (bp) in length, containing a large single-copy (LSC) region of 86,056 bp, a small single-copy (SSC) region of 18,262 bp, and two inverted repeat (IR) regions of 26,113 bp. The plastome possesses total 125 genes, including 81 protein-coding genes, eight rRNA genes, and 36 tRNA genes. In addition, the overall GC-content of the whole plastome is 37.9%, while the corresponding values of the LSC, SSC, and IR regions are 36.0, 32.2, and 43.0%, respectively. Furthermore, phylogenetic analyses show that N. yunnanensis is closely related to the species of Camptotheca acuminata.


Nyssa yunnanensis Plastome Phylogenetic analyses 



This research was supported by the National Key Research and Development Program of China (Grant 2017YFC0505200) and the National Natural Science Foundation of China (Grant 31770232).


  1. Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45(4):e18. Google Scholar
  2. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  3. Huang DI, Cronk QCB (2015) Plann: a command-line application for annotating plastome sequences. Appl Plant Sci 3(8):1500026. CrossRefGoogle Scholar
  4. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. CrossRefGoogle Scholar
  5. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. CrossRefGoogle Scholar
  6. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger dataset. Mol Biol Evol 33(7):1870–1874. CrossRefGoogle Scholar
  7. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41(W1):W575–W581. CrossRefGoogle Scholar
  8. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. Google Scholar
  9. Sun B-L, Zhang C-Q, Lowry PP, Wen J (2009) Cryptic dioecy in Nyssa yunnanensis (Nyssaceae), a critically endangered species from tropical Eastern Asia. Ann Mo Bot Gard 96(4):672–684. CrossRefGoogle Scholar
  10. Wang N, Milne RI, Jacques FMB, Sun B-L, Zhang C-Q, Yang J-B (2012) Phylogeny and a revised classification of the Chinese species of Nyssa (Nyssaceae) based on morphological and molecular data. Taxon 61(2):344–354CrossRefGoogle Scholar
  11. Wang W, Liu H, He Q, Yang W, Chen Z, Wang M, Su Y, Ma T (2017) Characterization of the complete chloroplast genome of Camptotheca acuminata. Conserv Genet Resour 9(2):241–243. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina

Personalised recommendations