Advertisement

Conservation Genetics Resources

, Volume 11, Issue 3, pp 355–363 | Cite as

Testing a new SNP-chip on the Alpine and Apennine brown bear (Ursus arctos) populations using non-invasive samples

  • Patrizia GiangregorioEmail author
  • Anita J. Norman
  • Francesca Davoli
  • Göran Spong
Methods and Resources Articles

Abstract

Brown bears in Italy persist in two isolated populations, one in the Alpine and the other in the Apennine mountain range. Both are threatened and elusive. Non-invasive genetics provides a good way to monitor the populations. Microsatellites (STRs) have been the marker of choice for non-invasive genetic monitoring, but due to non-invasive bad quality samples, these analyses were plagued by low amplification rates and genotyping errors. Moreover, to compare microsatellite genotypes, allele calibration is needed between laboratories, leading to difficulties in individual identification. In contrast, SNP genotyping is directly comparable between laboratories, and more sensitive and accurate. Here we test a 96-marker SNP chip developed for the Scandinavian brown bear population on the Italian populations. A subset of these SNPs was found informative and could reliable confirm species, sex and, only in the Alpine population, distinguish individuals. A total of 51 informative SNPs provided better resolution power than 15 STRs, used in the routine monitoring of the Alpine population in Italy. In contrast, only 15 SNPs were found to be informative for the Apennine population, which did not have enough resolution to discriminate individuals and were less informative than 11 STRs. While highly useful in the Alpine population, additional SNP markers must be included to reach the same level of resolution in the Apennine population.

Keywords

SNP-chip SNP resolution Non-invasive genetics Fingerprinting Brown bear 

Notes

Acknowledgements

We aknowledge all the management authorities which provided samples analyzed in this study: Autonomous Province of Bolzano, Autonomous Province of Trento, Autonomous Region of Friuli Venezia Giulia, Lombardia Region, Veneto Region, Lazio Region, Majella National Park, Abruzzo, Lazio and Molise National Park and Monte Genzana Alto Gizio Regional Nature Reserve. We also thank Helena Königsson (SLU) for having professionally analyzed SNPs. We are grateful to Nadia Mucci for the critical revision of the manuscript and Ettore Randi, Romolo Caniglia, Federica Mattucci and Edoardo Velli (ISPRA) for valuable discussion and suggestions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12686_2018_1017_MOESM1_ESM.pdf (28 kb)
Supplementary material 1 (PDF 27 KB)

References

  1. Anderson EC, Garza JC (2005) The power of single-nucleotide polymorphisms for large-scale parentage inference. Genetics 172:2567–2582.  https://doi.org/10.1534/genetics.105.048074 CrossRefGoogle Scholar
  2. Benazzo A, Boitani L, Cahill J et al (2015) The evolution of the small and isolated population of Apennine brown bears (Ursus arctos marsicanus): a whole-genomes perspective. VI Congress of the Italian Society for Evolutionary Biology, Bologna August 31–September 3, 2015. p 82Google Scholar
  3. Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13:3601–3608.  https://doi.org/10.1111/j.1365-294X.2004.02352.x CrossRefGoogle Scholar
  4. Broquet T, Ménard N, Petit E (2007) Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv Genet 249–260.  https://doi.org/10.1007/s10592-006-9146-5
  5. Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18:249–256.  https://doi.org/10.1016/S0169-5347(03)00018-1 CrossRefGoogle Scholar
  6. Brzeski KE, Rabon DR, Chamberlain MJ et al (2014) Inbreeding and inbreeding depression in endangered red wolves (Canis rufus). Mol Ecol.  https://doi.org/10.1111/mec.12871 Google Scholar
  7. Coates BS, Sumerford DV, Miller NJ et al (2009) Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis. J Hered 100:556–564.  https://doi.org/10.1093/jhered/esp028 CrossRefGoogle Scholar
  8. Creel S, Spong G, Sands JL et al (2003) Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol Ecol 12:2003–2009.  https://doi.org/10.1046/j.1365-294X.2003.01868.x CrossRefGoogle Scholar
  9. De Barba M, Waits LP, Garton EO et al (2010) The power of genetic monitoring for studying demography, ecology and genetics of a reintroduced brown bear population. Mol Ecol 19:3938–3951.  https://doi.org/10.1111/j.1365-294X.2010.04791.x CrossRefGoogle Scholar
  10. Dewoody J, Nason JD, Hipkins D (2006) Mitigating scoring errors in microsatellite data from wild populations. Mol Ecol Notes 6:951–957.  https://doi.org/10.1111/j.1471-8286.2006.01449.x CrossRefGoogle Scholar
  11. Ennis S, Gallagher TF (1994) A PCR-based sex-determination assay in cattle based on the bovine amelogenin locus. Anim genet 25(6):425–427.  https://doi.org/10.1111/j.1365-2052.1994.tb00533.x CrossRefGoogle Scholar
  12. Fechner PY (1996) The role of SRY in mammalian sex determination. Pediatr Int 38(4):380–389.  https://doi.org/10.1111/j.1442-200X.1996.tb03512.x CrossRefGoogle Scholar
  13. Fitak RR, Naidu A, Thompson RW et al (2016) Articles a new panel of SNP markers for the individual identification of North American pumas. J Fish Wildl Manag 7:e1944–e1687X.  https://doi.org/10.3996/112014-JFWM-080 CrossRefGoogle Scholar
  14. Forconi P, Davoli F, Di Clemente G et al (2014) Fatal long distance roaming of a male bear highlights survival threats to dispersing bears in the apennines, central Italy. Hystrix 25:56–58.  https://doi.org/10.4404/hystrix-25.1-9954 Google Scholar
  15. Gervasi V, Ciucci P, Boulanger J et al (2008) A preliminary estimate of The Apennine brown bear population size based on hair-snag sampling and multiple data source mark–recapture huggins models. Ursus 19:105–121.  https://doi.org/10.2192/07GR022.1 CrossRefGoogle Scholar
  16. Haanes H, Markussen SS, Herfindal I et al (2013) Effects of inbreeding on fitness-related traits in a small isolated moose population. Ecol Evol 3:4230–4242.  https://doi.org/10.1002/ece3.819 CrossRefGoogle Scholar
  17. Hauser L, Baird M, Hilborn R et al (2011) An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon (Oncorhynchus nerka) population. Mol Ecol Resour 11:150–161.  https://doi.org/10.1111/j.1755-0998.2010.02961.x CrossRefGoogle Scholar
  18. Hellborg L, Ellegren H (2004) low levels of nucleotide diversity in mammalian Y chromosomes. Mol Biol Evol 21:158–163.  https://doi.org/10.1093/molbev/msh008 CrossRefGoogle Scholar
  19. Karamanlidis A, Straka M, Drosopoulou E et al (2012) Genetic diversity, structure, and size of an endangered brown bear population threatened by highway construction in the Pindos Mountains, Greece. Eur J Wildl Res 58:511–522.  https://doi.org/10.1007/s10344-011-0598-7 CrossRefGoogle Scholar
  20. Kindberg J, Swenson JE, Ericsson G et al (2011) Estimating population size and trends of the Swedish brown bear Ursus arctos population current management estimating population size and trends of the Swedish brown bear Ursus arctos population. Wildl Biol 17:114–123.  https://doi.org/10.2981/10-100 CrossRefGoogle Scholar
  21. Kraus RH, Förster DW, Vonholdt B et al (2015) A SNP-based approach for rapid and cost- effective genetic wolf monitoring in Europe based on non-invasively collected samples. Mol Ecol Resour.  https://doi.org/10.1111/1755-0998.12307 Google Scholar
  22. Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications. Int J Plant Genom.  https://doi.org/10.1155/2012/831460 Google Scholar
  23. Lorenzini R, Posillico M, Gentile L et al (2004) La Conservazione dell’ Orso Bruno (Ursus arctos) in Appennino: il supporto della genetica non invasiva. Hystrix Ital J Mammal 15:69–85Google Scholar
  24. Miller CR, Joyce P, Waits LP (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366Google Scholar
  25. Morin PA, Luikart G, Wayne RK, Group and the S workshop (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216.  https://doi.org/10.1016/j.tree.2004.01.009 CrossRefGoogle Scholar
  26. Norman AJ, Spong G (2015) Single nucleotide polymorphism-based dispersal estimates using noninvasive sampling. Ecol Evol 5:3056–3065.  https://doi.org/10.1002/ece3.1588 CrossRefGoogle Scholar
  27. Norman AJ, Street NR, Spong G (2013) De novo SNP discovery in the Scandinavian brown bear (Ursus arctos). PLoS ONE 8:e81012.  https://doi.org/10.1371/journal.pone.0081012 CrossRefGoogle Scholar
  28. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539.  https://doi.org/10.1093/bioinformatics/bts460 CrossRefGoogle Scholar
  29. Piggott MP, Taylor AC (2003) Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildl Res 30:1–13.  https://doi.org/10.1071/WR02077 CrossRefGoogle Scholar
  30. Ryynanen HJ, Tonteri A, Vasemagi A, Primmer CR (2007) A comparison of biallelic markers and microsatellites for the estimation of population and conservation genetic parameters in Atlantic Salmon (Salmo salar). J Hered 98:692–704.  https://doi.org/10.1093/jhered/esm093 CrossRefGoogle Scholar
  31. Seddon JM, Parker HG, Ostrander EA, Ellegren H (2005) SNPs in ecological and conservation studies: a test in the Scandinavian wolf population. Mol Ecol 14:503–511.  https://doi.org/10.1111/j.1365-294X.2005.02435.x CrossRefGoogle Scholar
  32. Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Biol J Linn Soc 68:41–55.  https://doi.org/10.1111/j.1095-8312.1999.tb01157.x CrossRefGoogle Scholar
  33. Taberlet P, Griffin S, Goossens B et al (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194.  https://doi.org/10.1093/nar/24.16.3189 CrossRefGoogle Scholar
  34. Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327.  https://doi.org/10.1016/S0169-5347(99)01637-7 CrossRefGoogle Scholar
  35. Tosi G, Chirichella R, Zibordi F et al (2015) Brown bear reintroduction in the Southern Alps: to what extent are expectations being met ? J Nat Conserv 26:9–19.  https://doi.org/10.1016/j.jnc.2015.03.007 CrossRefGoogle Scholar
  36. Tsaparis D, Karaiskou N, Mertzanis Y, Triantafyllidis A (2014) Non-invasive genetic study and population monitoring of the brown bear (Ursus arctos) (Mammalia: Ursidae) in Kastoria region–Greece. J Nat Hist.  https://doi.org/10.1080/00222933.2013.877992 Google Scholar
  37. Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 10:255–257.  https://doi.org/10.1046/j.1471-8278 Google Scholar
  38. Vignal A, Milan D, SanCristobal M, André E (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305.  https://doi.org/10.1051/gse CrossRefGoogle Scholar
  39. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256.  https://doi.org/10.1046/j.1365-294X.2001.01185.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.ISPRA, Conservation Genetics LaboratoryInstitute for Environmental Protection and ResearchBolognaItaly
  2. 2.Department of Earth, Life and Environmental SciencesUniversity of BolognaBolognaItaly
  3. 3.Department of Life SciencesSan Diego Zoo GlobalSan DiegoUSA
  4. 4.Department of Wildlife, Fish and Environmental Studies, Molecular Ecology GroupSwedish University of Agricultural SciencesUmeåSweden
  5. 5.Forestry and Environmental Resources, College of Natural ResourcesNorth Carolina State UniversityRaleighUSA

Personalised recommendations