Advertisement

Conservation Genetics Resources

, Volume 11, Issue 3, pp 345–353 | Cite as

Experimental approaches for ancient DNA extraction and sample preparation for next generation sequencing in ultra-clean conditions

  • A. D. Matsvay
  • I. E. Alborova
  • E. V. Pimkina
  • M. L. Markelov
  • K. KhafizovEmail author
  • K. K. Mustafin
Methods and Resources Article

Abstract

In this study, we aimed to develop an approach for genetic material extraction and sample preparation of ancient DNA for next generation sequencing that minimizes intra-laboratory contamination. A special module system consisting of four sterile gloveboxes connected by antechambers, which maintain a high purity atmosphere and allow conducting all stages of sample preparation in an isolated clean environment, starting with the processing of archaeological material, was developed. Furthermore, a fast and cost-effective double-stranded library preparation protocol for massive parallel sequencing was developed using non-standard modified sequencing adaptors, which enabled obtaining a library of fragments from extremely low amounts of starting degraded material. Bioinformatics data processing showed that the distribution of substitution frequencies in a subset of reads, mapped to the human reference genome, completely coincides with the pattern of postmortem modifications expected when the double-stranded library preparation method is employed. This is a strong evidence for the endogenous origin of the sequenced fragments of the human genome. Thus, the results of ancient sample and negative control sample sequencing, indicated the absence of visible contamination during sample preparation procedure.

Keywords

Ancient DNA Bioinformatics Human genetics Next generation sequencing DNA extraction 

Notes

Funding

This work was supported by the Endowment Fund.

References

  1. Allard MW, Young D, Huyen Y (1995) Detecting dinosaur DNA. Science 268:1192 (author reply 1194)CrossRefGoogle Scholar
  2. Allentoft ME, Sikora M, Sjogren KG, Rasmussen S, Rasmussen M, Stenderup J, Damgaard PB, Schroeder H, Ahlstrom T, Vinner L, Malaspinas AS, Margaryan A, Higham T, Chivall D, Lynnerup N, Harvig L, Baron J, Della Casa P, Dabrowski P, Duffy PR, Ebel AV, Epimakhov A, Frei K, Furmanek M, Gralak T, Gromov A, Gronkiewicz S, Grupe G, Hajdu T, Jarysz R, Khartanovich V, Khokhlov A, Kiss V, Kolar J, Kriiska A, Lasak I, Longhi C, McGlynn G, Merkevicius A, Merkyte I, Metspalu M, Mkrtchyan R, Moiseyev V, Paja L, Palfi G, Pokutta D, Pospieszny L, Price TD, Saag L, Sablin M, Shishlina N, Smrcka V, Soenov VI, Szeverenyi V, Toth G, Trifanova SV, Varul L, Vicze M, Yepiskoposyan L, Zhitenev V, Orlando L, Sicheritz-Ponten T, Brunak S, Nielsen R, Kristiansen K, Willerslev E (2015) Population genomics of Bronze Age Eurasia. Nature 522:167–172.  https://doi.org/10.1038/nature14507 CrossRefGoogle Scholar
  3. Austin JJ, Ross AJ, Smith AB, Fortey RA, Thomas RH (1997a) Problems of reproducibility—does geologically ancient DNA survive in amber-preserved insects? Proc Biol Sci 264:467–474.  https://doi.org/10.1098/rspb.1997.0067 CrossRefGoogle Scholar
  4. Austin JJ, Smith AB, Thomas RH (1997b) Palaeontology in a molecular world: the search for authentic ancient DNA. Trends Ecol Evol 12:303–306.  https://doi.org/10.1016/S0169-5347(97)01102-6 CrossRefGoogle Scholar
  5. Briggs AW, Stenzel U, Johnson PL, Green RE, Kelso J, Prufer K, Meyer M, Krause J, Ronan MT, Lachmann M, Paabo S (2007) Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci USA 104:14616–14621.  https://doi.org/10.1073/pnas.0704665104 CrossRefGoogle Scholar
  6. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJ (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25:1422–1423.  https://doi.org/10.1093/bioinformatics/btp163 CrossRefGoogle Scholar
  7. Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289:1139CrossRefGoogle Scholar
  8. Dabney J, Knapp M, Glocke I, Gansauge MT, Weihmann A, Nickel B, Valdiosera C, Garcia N, Paabo S, Arsuaga JL, Meyer M (2013) Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci USA 110:15758–15763.  https://doi.org/10.1073/pnas.1314445110 CrossRefGoogle Scholar
  9. Der Sarkissian C, Allentoft ME, Avila-Arcos MC, Barnett R, Campos PF, Cappellini E, Ermini L, Fernandez R, da Fonseca R, Ginolhac A, Hansen AJ, Jonsson H, Korneliussen T, Margaryan A, Martin MD, Moreno-Mayar JV, Raghavan M, Rasmussen M, Velasco MS, Schroeder H, Schubert M, Seguin-Orlando A, Wales N, Gilbert MT, Willerslev E, Orlando L (2015) Ancient genomics. Philos Trans R Soc Lond B Biol Sci 370:20130387.  https://doi.org/10.1098/rstb.2013.0387 CrossRefGoogle Scholar
  10. Fulton TL (2012) Setting up an ancient DNA laboratory. Methods Mol Biol 840:1–11.  https://doi.org/10.1007/978-1-61779-516-9_1 CrossRefGoogle Scholar
  11. Gansauge MT, Meyer M (2013) Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat Protoc 8:737–748.  https://doi.org/10.1038/nprot.2013.038 CrossRefGoogle Scholar
  12. Gilbert MT, Hansen AJ, Willerslev E, Rudbeck L, Barnes I, Lynnerup N, Cooper A (2003a) Characterization of genetic miscoding lesions caused by postmortem damage. Am J Hum Genet 72:48–61.  https://doi.org/10.1086/345379 CrossRefGoogle Scholar
  13. Gilbert MT, Willerslev E, Hansen AJ, Barnes I, Rudbeck L, Lynnerup N, Cooper A (2003b) Distribution patterns of postmortem damage in human mitochondrial DNA. Am J Hum Genet 72:32–47.  https://doi.org/10.1086/345378 CrossRefGoogle Scholar
  14. Graur D, Pupko T (2001) The Permian bacterium that isn’t. Mol Biol Evol 18:1143–1146CrossRefGoogle Scholar
  15. Gutierrez G, Marin A (1998) The most ancient DNA recovered from an amber-preserved specimen may not be as ancient as it seems. Mol Biol Evol 15:926–929CrossRefGoogle Scholar
  16. Hofreiter M, Jaenicke V, Serre D, von Haeseler A, Paabo S (2001) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29:4793–4799CrossRefGoogle Scholar
  17. Krause J, Orlando L, Serre D, Viola B, Prufer K, Richards MP, Hublin JJ, Hanni C, Derevianko AP, Paabo S (2007) Neanderthals in central Asia and Siberia. Nature 449:902–904.  https://doi.org/10.1038/nature06193 CrossRefGoogle Scholar
  18. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359.  https://doi.org/10.1038/nmeth.1923 CrossRefGoogle Scholar
  19. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760.  https://doi.org/10.1093/bioinformatics/btp324 CrossRefGoogle Scholar
  20. Li TW, Weeks KM (2006) Structure-independent and quantitative ligation of single-stranded DNA. Anal Biochem 349:242–246.  https://doi.org/10.1016/j.ab.2005.11.002 CrossRefGoogle Scholar
  21. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715.  https://doi.org/10.1038/362709a0 CrossRefGoogle Scholar
  22. Nicholls H (2005) Ancient DNA comes of age. PLoS Biol 3:e56.  https://doi.org/10.1371/journal.pbio.0030056 CrossRefGoogle Scholar
  23. Okonechnikov K, Conesa A, Garcia-Alcalde F (2016) Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32:292–294.  https://doi.org/10.1093/bioinformatics/btv566 Google Scholar
  24. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, Schubert M, Cappellini E, Petersen B, Moltke I, Johnson PL, Fumagalli M, Vilstrup JT, Raghavan M, Korneliussen T, Malaspinas AS, Vogt J, Szklarczyk D, Kelstrup CD, Vinther J, Dolocan A, Stenderup J, Velazquez AM, Cahill J, Rasmussen M, Wang X, Min J, Zazula GD, Seguin-Orlando A, Mortensen C, Magnussen K, Thompson JF, Weinstock J, Gregersen K, Roed KH, Eisenmann V, Rubin CJ, Miller DC, Antczak DF, Bertelsen MF, Brunak S, Al-Rasheid KA, Ryder O, Andersson L, Mundy J, Krogh A, Gilbert MT, Kjaer K, Sicheritz-Ponten T, Jensen LJ, Olsen JV, Hofreiter M, Nielsen R, Shapiro B, Wang J, Willerslev E (2013) Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:74–78.  https://doi.org/10.1038/nature12323 CrossRefGoogle Scholar
  25. Paabo S (1989) Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci USA 86:1939–1943CrossRefGoogle Scholar
  26. Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I, Metspalu M, Metspalu E, Kivisild T, Gupta R, Bertalan M, Nielsen K, Gilbert MT, Wang Y, Raghavan M, Campos PF, Kamp HM, Wilson AS, Gledhill A, Tridico S, Bunce M, Lorenzen ED, Binladen J, Guo X, Zhao J, Zhang X, Zhang H, Li Z, Chen M, Orlando L, Kristiansen K, Bak M, Tommerup N, Bendixen C, Pierre TL, Gronnow B, Meldgaard M, Andreasen C, Fedorova SA, Osipova LP, Higham TF, Ramsey CB, Hansen TV, Nielsen FC, Crawford MH, Brunak S, Sicheritz-Ponten T, Villems R, Nielsen R, Krogh A, Wang J, Willerslev E (2010) Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463:757–762.  https://doi.org/10.1038/nature08835 CrossRefGoogle Scholar
  27. Skoglund P, Northoff BH, Shunkov MV, Derevianko AP, Paabo S, Krause J, Jakobsson M (2014) Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc Natl Acad Sci USA 111:2229–2234.  https://doi.org/10.1073/pnas.1318934111 CrossRefGoogle Scholar
  28. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214.  https://doi.org/10.1089/10665270050081478 CrossRefGoogle Scholar
  29. Zischler H, Hoss M, Handt O, von Haeseler A, van der Kuyl AC, Goudsmit J (1995) Detecting dinosaur DNA. Science 268:1192–1193 (author reply 1194)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • A. D. Matsvay
    • 1
    • 2
  • I. E. Alborova
    • 1
  • E. V. Pimkina
    • 2
  • M. L. Markelov
    • 2
  • K. Khafizov
    • 1
    • 2
    Email author
  • K. K. Mustafin
    • 1
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyRussian Federation
  2. 2.Central Research Institute of EpidemiologyMoscowRussian Federation

Personalised recommendations