Advertisement

Conservation Genetics Resources

, Volume 11, Issue 3, pp 263–266 | Cite as

The complete mitochondrial genome of giant clam, Hippopus hippopus (Cardiidae: Tridacninae)

  • Haitao Ma
  • Yuehuan Zhang
  • Shu Xiao
  • Shixi Chen
  • Yang Zhang
  • Zhiming Xiang
  • Jun Li
  • Ziniu YuEmail author
Technical Note

Abstract

We report the recovery and characterization of the complete mitochondrial genome of commercially and ecologically important giant clam, Hippopus hippopus. The total length of H. hippopus mitogenome was 22,463 bps (bp), comprising13 protein-coding genes, 23 tRNA genes, 2 rRNA genes and a non-coding control region. The control region was 3508 bp long and located between the trnM-atg and COX2 genes. We found the atp8 gene between trnF-ttc and NAD4 in the mitogenome of H. hippopus, which was absent in another giant clam species, Tridacna squamosa, as well as other bivalve species. Our new and first data of the complete H. hippopus mitogenome will offer genetic information that will be useful for furthering conservation genetics research of this threatened species.

Keywords

Hippopus hippopus Mitochondrial genome Conservation genetics 

Notes

Acknowledgements

We thank Dr. Neo Mei Lin for her help in proofreading this manuscript. This work was supported by National Science Foundation of China (31702340), Guangdong Natural Science Foundation (2017A030310442), STS project of Chinese Academy of Sciences (KFJ-EW-STS-123), Strategic pilot project of the Chinese Academy of Sciences (XDA13020200), Key projects of Chinese Academy of Sciences (KGZD-EW-609), China Agricultural ShellfishIndustry Technology System Project (CARS-49) and Science and Technology Planning Project of Guangdong Province, China (2017B030314052).

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest, and are alone responsible for the content and writing of the paper.

References

  1. Attitalla IH (2011) Modified CTAB method for high quality genomic DNA extraction from medicinal plants. Pak J BiolSci 14:998–999CrossRefGoogle Scholar
  2. Galtier N, Nabholz B, Glémin S, Hurst GDD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550CrossRefGoogle Scholar
  3. Gan HM, Gan HY, Tan MH, Penny SS, Willan RC, Austin CM (2016) The complete mitogenome of the giant clam Tridacna squamosa (Heterodonta: Bivalvia: Tridacnidae). Mitochondrial DNA A 27(5):3220–3221CrossRefGoogle Scholar
  4. Griffiths CL, Klumpp DW (1996) Relationships between size, mantle area and zooxanthellae numbers in five species of giant clam (Tridacnidae). Mar Ecol Prog Ser 137:139–147CrossRefGoogle Scholar
  5. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefGoogle Scholar
  6. Meng XP, Zhao NN, Shen X, Hao J, Liang M, Zhu XL, Cheng HL, Yan BL, Liu ZP (2012) Complete mitochondrial genome of Coelomactraantiquata (Mollusca: Bivalvia): the first representative from the family Mactridae with novel gene order and unusual tandem repeats. Compar Biochem Physiol D 7:175–179Google Scholar
  7. Neo ML, Eckman W, Vicentuan K, Teo SL-M, Todd PA (2015) The ecological significance of giant clams in coral reef ecosystems. Biol Conserv 181:111–123CrossRefGoogle Scholar
  8. Neo ML, Wabnitz CCC, Braley RD, Heslinga GA, Fauvelot C, Van Wynsberge S, Andréfouët S, Waters C, Tan AS-H, Gomez ED, Costello MJ, Todd PA (2017) Chapter 4. Giant clams (Bivalvia: Cardiidae: Tridacninae): a comprehensive update of species and their distribution, current threats and conservation status. Oceanogr Mar Biol 55:87–388Google Scholar
  9. Rosewater J (1965) The family Tridacnidae in the Indo-Pacific. Indo-Pacific Mollusca 1:347–394Google Scholar
  10. Tiavouane J, Jacob T, Dumas PP, Fauvelot C (2014) Isolation and characterization of fifteen microsatellite loci for the giant clam Hippopus hippopus (family Tridacnidae). Conserv Genet Resour 6(3):735–737CrossRefGoogle Scholar
  11. Wells S (1996) The IUCN Red List of Threatened Species 1996. IUCN Global Species Programme Red List Unit, Cambridge. http://www.iucnredlist.org/. Accessed 23 Jan 2018
  12. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255CrossRefGoogle Scholar
  13. Zhan A, Bailey SA, Heath DD, Macisaac HJ (2014) Performance comparison of genetic markers for high-throughput sequencing based biodiversity assessment in complex communities. Mol Ecol Resour 14:1049–1059Google Scholar
  14. Zhao QY, Wang Y, Kong YM, Luo D, Li X, Hao P (2011) Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics 12(Suppl 14):S2CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Haitao Ma
    • 1
    • 2
  • Yuehuan Zhang
    • 1
    • 2
  • Shu Xiao
    • 1
    • 2
  • Shixi Chen
    • 1
    • 2
  • Yang Zhang
    • 1
    • 2
  • Zhiming Xiang
    • 1
    • 2
  • Jun Li
    • 1
    • 2
  • Ziniu Yu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation CenterGuangzhouChina

Personalised recommendations