Thin Film Coating of Mg-Intercalated Layered MnO2 to Suppress Chlorine Evolution at an IrO2 Anode in Cathodic Protection

  • Hikaru Abe
  • Tamie Kobayakawa
  • Heishi Maruyama
  • Toru Wakabayashi
  • Masaharu NakayamaEmail author
Original Research


Titanium-supported electrocatalysts composed of novel metal oxides have exclusively been utilized as anodes in the cathodic protection (CP) of steel structures. These types of anodes have a small overpotential toward the chlorine evolution reaction (CER) in impressed-current cathodic protection (ICCP) systems and vigorously evolve chlorine (Cl2) in electrolytes containing Cl, such as seawater. Cl2 has a negative impact on the ecosystem because of its intrinsic toxicity and corrosivity. We present herein a thin film coating that can effectively suppress the CER without prevention of the oxygen evolution reaction (OER) at the underlying iridium oxide (IrO2) layer coated on a titanium substrate in 0.5 M NaCl solution. The thin film consists of buserite-type layered manganese dioxide (MnO2), the interlayer of which accommodates Mg2+ cations and two layers of H2O molecules, and is uniformly deposited via an electrochemical route and subsequent ion-exchange. The CER efficiency of the electrode modified with the Mg-buserite layer was as small as 11% at + 1.7 V vs. Ag/AgCl.

Graphical Abstract

Thin film coating of Mg-intercalated layered MnO2 to suppress chlorine evolution at an IrO2 anode in cathodic protection by Hikaru Abe, Tamie Kobayakawa, Heishi Maruyama, Toru Wakabayashi, Masaharu Nakayama*.


Cathodic protection Chlorine evolution Oxygen evolution Buserite Magnesium Iridium oxide 


Funding information

This present work is under the support by the following organizations: Japan Society for the Promotion of Science (grant no. 16 K05938) and Yamaguchi University Blue Energy center for SGE Technology (BEST).


  1. 1.
    R.B. Mears, R.H. Brown, A theory of cathodic protection. J. Electrochem. Soc. 74(1), 519 (1938)CrossRefGoogle Scholar
  2. 2.
    H.H. Uhlig, R.W. Revie, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, 4th edn. (Wiley, Hoboken, 2008)Google Scholar
  3. 3.
    A. Bahadori, Cathodic Corrosion Protection Systems: A Guide for Oil and Gas Industries (Gulf Professional Publishing, Oxford, 2014)Google Scholar
  4. 4.
    C.F. Schrieber, in Designing Cathodic Protection Systems for Marine Structures and Vehicles, ed. by H. P. Hack. (ASTM International, West Conshohocken, 1999), p. 39Google Scholar
  5. 5.
    H. Bohnes, D. Funk, in Handbook of Cathodic Corrosion Protection Theory and Practice of Electrochemical Protection Processes, ed. by W. V. Baeckmann, W. Schwenk, W. Prinz. (Gulf Professional Publishing, Houston, 1997), p. 207Google Scholar
  6. 6.
    B.V. Tilak, C.P. Chen, in Chlor-Alkali and Chlorate Technology: R.B. Macmullin Memorial Symposium: Proceedings of the Symposium, ed. by H. S. Burney, N. Furuya, F. Hine, K. I. Ota. (The Electrochemical Society, Pennington, 1999), p. 8Google Scholar
  7. 7.
    F. Hine, M. Yasuda, T. Yoshida, Studies on the oxide-coated metal anodes for chlor-alkali cells. J. Electrochem. Soc. 124(4), 500 (1977)CrossRefGoogle Scholar
  8. 8.
    T.F. O’Brien, T.V. Bommaraju, F. Hine, Handbook of Chlor-Alkali Technology, vol 1 (Springer, New York, 2005)CrossRefGoogle Scholar
  9. 9.
    S. Trasatti, Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 29(11), 1503–1512 (1984)CrossRefGoogle Scholar
  10. 10.
    S. Trasatti, Electrocatalysis: understanding the success of DSA®. Electrochim. Acta 45(15-16), 2377–2385 (2000)CrossRefGoogle Scholar
  11. 11.
    L.I. Krishtalik, Kinetics and mechanism of anodic chlorine and oxygen evolution reactions on transition metal oxide electrodes. Electrochim. Acta 26(3), 329–337 (1981)CrossRefGoogle Scholar
  12. 12.
    E.P. Anderson, U.S. Patent 3, 303, 118 (1967)Google Scholar
  13. 13.
    M. Saleem, M.H. Chakrabarti, D.B. Hasan, M.S. Islam, R. Yussof, S.A. Hajimolana, M.A. Hussain, G.M.A. Khan, B.S. Ali, Int. J. Electrochem. Sci. 7, 3929 (2012)Google Scholar
  14. 14.
    J.E. Bennet, Electrodes for generation of hydrogen and oxygen from seawater. Int. J. Hydrog. Energy 5(4), 401–408 (1980)CrossRefGoogle Scholar
  15. 15.
    K. Fujimura, K. Izumiya, A. Kawashima, E. Akiyama, H. Habazaki, N. Kumagai, K. Hashimoto, J. Appl. Electrochem. 29, 765 (1999)CrossRefGoogle Scholar
  16. 16.
    J. Esswein, Y. Surendranath, S.Y. Reecea, D.G. Nocera, Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energy Environ. Sci. 4(2), 499–504 (2011)CrossRefGoogle Scholar
  17. 17.
    F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, P. Strasser, Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 9(9), 962–972 (2016)CrossRefGoogle Scholar
  18. 18.
    F. Cheng, X. Feng, X. Chen, W. Lin, J. Rong, W. Yang, Synergistic action of Co-Fe layered double hydroxide electrocatalyst and multiple ions of sea salt for efficient seawater oxidation at near-neutral pH. Electrochim. Acta 251, 336–343 (2017)CrossRefGoogle Scholar
  19. 19.
    N. Jiang, H. Meng, The durability of different elements doped manganese dioxide-coated anodes for oxygen evolution in seawater electrolysis. Surf. Coat. Technol. 206(21), 4362–4367 (2012)CrossRefGoogle Scholar
  20. 20.
    R.K.B. Karlsson, A. Cornell, Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 116(5), 2982–3028 (2016)CrossRefGoogle Scholar
  21. 21.
    K. Izumiya, E. Akiyama, H. Habazaki, N. Kumagai, A. Kawashima, K. Hashimoto, Anodically deposited manganese oxide and manganese–tungsten oxide electrodes for oxygen evolution from seawater. Electrochim. Acta 43(21-22), 3303–3312 (1998)CrossRefGoogle Scholar
  22. 22.
    J.G. Vos, T.A. Wezendonk, A.W. Jeremiasse, T.M. Koper, MnOx/IrOxas selective oxygen evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 140(32), 10270–10281 (2018)CrossRefGoogle Scholar
  23. 23.
    K. Obata, K. Takanabe, A permselective CeOxCoating to improve the stability of oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 57(6), 1616–1620 (2018)CrossRefGoogle Scholar
  24. 24.
    M. Nakayama, S. Konishi, A. Tanaka, K. Ogura, A novel electrochemical method for preparation of thin films of layered manganese oxides. Chem. Lett. 33(6), 670–671 (2004)CrossRefGoogle Scholar
  25. 25.
    K. Fujimoto, T. Okada, M. Nakayama, Enhanced oxygen evolution reaction activity of co ions isolated in the interlayer space of buserite MnO2. J. Phys. Chem. C 122(15), 8406–8413 (2018)CrossRefGoogle Scholar
  26. 26.
    M. Nakayama, S. Osae, S. Kaneshige, K. Komine, H. Abe, Direct growth of birnessite-type MnO2on treated carbon cloth for a flexible asymmetric supercapacitor with excellent cycling stability. J. Electrochem. Soc. 163(10), A2340–A2348 (2016)CrossRefGoogle Scholar
  27. 27.
    R. Inoue, Y. Nakashima, K. Tomono, M. Nakayama, Electrically rearranged birnessite-type MnO2by repetitive potential steps and its pseudocapacitive properties. J. Electrochem. Soc. 159(4), A445–A451 (2012)CrossRefGoogle Scholar
  28. 28.
    T. Liu, Y. Liong, Q. Liu, X. Sun, Y. He, A.M. Asiri, Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochem. Commun. 60, 92–96 (2015)CrossRefGoogle Scholar
  29. 29.
    M. Nakayama, M. Shamoto, A. Kamimura, Surfactant-induced electrodeposition of layered manganese oxide with large interlayer space for catalytic oxidation of phenol. Chem. Mater. 22(21), 5887–5894 (2010)CrossRefGoogle Scholar
  30. 30.
    K. Mori, S. Iguchi, S. Takebe, M. Nakayama, A thin film sorbent of layered organo-MnO2for the extraction of p-aminoazobenzene from aqueous solution. J. Mater. Chem. A 3(12), 6470–6476 (2015)CrossRefGoogle Scholar
  31. 31.
    T. Wallin, P. Linse, J. Phys. Chem. B 28, 5506 (1997)CrossRefGoogle Scholar
  32. 32.
    J.E. Post, Manganese oxide minerals: crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. U. S. A. 96(7), 3447–3454 (1999)CrossRefGoogle Scholar
  33. 33.
    I. Persson, Hydrated metal ions in aqueous solution: how regular are their structures? Pure Appl. Chem. 82(10), 1901–1917 (2010)CrossRefGoogle Scholar
  34. 34.
    J. Luo, Q. Zhang, A. Huang, O. Giraldo, L. Suib, Double-aging method for preparation of stabilized Na−buserite and transformations to todorokites incorporated with various metals. Inorg. Chem. 38(26), 6106–6113 (1999)CrossRefGoogle Scholar
  35. 35.
    J.E. Post, D.R. Veblen, Am. Mineral. 75, 477 (1990)Google Scholar
  36. 36.
    M. Chigane, M. Ishikawa, Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism. J. Electrochem. Soc. 147(6), 2246 (2000)CrossRefGoogle Scholar
  37. 37.
    H. Sato, A. Morita, K. Ono, H. Nakano, N. Wakabayashi, A. Yamaguchi, Templating effects on the mineralization of layered inorganic compounds: (1) density functional calculations of the formation of single-layered magnesium hydroxide as a brucite model. Langmuir 19(17), 7120–7126 (2003)CrossRefGoogle Scholar
  38. 38.
    S. Kobayashi, S. Nagayama, T. Busujima, Lewis acid catalysts stable in water. Correlation between catalytic activity in water and hydrolysis constants and exchange rate constants for substitution of inner-sphere water ligands. J. Am. Chem. Soc. 120(32), 8287–8288 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Graduate School of Science and Technology for InnovationYamaguchi UniversityUbeJapan
  2. 2.Nakabohtec Corrosion Protecting Co., LtdAgeoJapan
  3. 3.Blue Energy Center for SGE Technology (BEST)UbeJapan

Personalised recommendations