Advertisement

The Modification of Electrochemical Properties of Pd by its Alloying with Ru, Rh, and Pt: the Study of Ternary Systems

  • Katarzyna HubkowskaEmail author
  • Suwaphid Themsirimongkon
  • Surin Saipanya
  • Mariusz Łukaszewski
  • Andrzej Czerwiński
Original Research

Abstract

Pd-rich Pd-Pt-Ru alloys, obtained by electrodeposition, were characterized by microscopic and electrochemical techniques at room temperature (298 K). The influence of the electrode potential and bulk composition on the amount of electrosorbed hydrogen was studied in 0.5 M H2SO4 aqueous solutions and compared with the behavior of Pd-Rh-Ru alloys under identical experimental conditions. The maximum hydrogen absorption capacities gradually decreased with increasing total amounts of both Pt and Ru in the alloy bulk. The effects of both Pd bulk content and the relative proportions between other components in Pd-Pt-Ru and Pd-Rh-Ru electrodes are also responsible for the changes in maximum hydrogen absorption capacity, the decrease in the potential of the alpha-beta phase transition, and the decrease in the absorption/desorption hysteresis. During voltammetric cycling in 0.5 M H2SO4 in the potential range − 0.1÷1.5 V vs. RHE (scan rate 0.1 V/s), the freshly obtained deposits became enriched with Pt due to electrodissolution of Ru and Pd, and the electrode morphology was also altered due to hydrogen electrosorption and surface oxidation.

Graphical Abstract

Keywords

Hydrogen absorption and adsorption Pd-Pt-Ru alloys Pd-Rh-Ru alloys Thin layers Electrodeposition Cyclic voltammetry (CV) 

Notes

Funding Information

This work is financially supported by the National Science Centre (NCN, Poland) grant No. 2015/17/B/ST8/03377 (ID 289956).

References

  1. 1.
    F.A. Lewis, The palladium/hydrogen system (Academic, New York, 1967)Google Scholar
  2. 2.
    G. Alefeld, J. Völkl (eds.), Hydrogen in metals (Springer-Verlag, Berlin, 1978)Google Scholar
  3. 3.
    G. Jerkiewicz, Prog. Surf. Sci. 57, 137 (1998)CrossRefGoogle Scholar
  4. 4.
    G. Jerkiewicz, Electrocatalysis 1(4), 179 (2010)CrossRefGoogle Scholar
  5. 5.
    A. Zalineeva, S. Baranton, C. Coutanceau, G. Jerkiewicz, Langmuir 31, 1605 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Zalineeva, S. Baranton, C. Coutanceau, G. Jerkiewicz, Sci. Adv. 3, e1600542 (2017)CrossRefGoogle Scholar
  7. 7.
    N. Comisso, A. De Ninno, E. Del Giudice, G. Mengoli, P. Soldan, Electrochim. Acta 49, 1379 (2004)CrossRefGoogle Scholar
  8. 8.
    A. Żurowski, M. Łukaszewski, A. Czerwiński, Electrochim. Acta 51, 3112 (2006)CrossRefGoogle Scholar
  9. 9.
    U. Koss, M. Łukaszewski, K. Hubkowska, A. Czerwiński, J. Solid State Electrochem. 15, 2477 (2011)CrossRefGoogle Scholar
  10. 10.
    U. Koss, K. Hubkowska, M. Łukaszewski, A. Czerwiński, Electrochim. Acta 107, 269 (2013)CrossRefGoogle Scholar
  11. 11.
    Y. Sakamoto, Y. Haraguchi, M. Ura, F.L. Chen, Ber. Bunsenges. Phys. Chem. 98, 964 (1994)CrossRefGoogle Scholar
  12. 12.
    K. Hubkowska, M. Łukaszewski, A. Czerwiński, Electrochem. Commun. 20, 175 (2012)CrossRefGoogle Scholar
  13. 13.
    K. Hubkowska, U. Koss, M. Łukaszewski, A. Czerwiński, J. Electroanal. Chem. 704, 10 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Sakamoto, F.L. Chen, M. Ura, T.B. Flanagan, Ber. Bunsenges. Phys. Chem. 99, 807 (1995)CrossRefGoogle Scholar
  15. 15.
    E. Wicke, K. Frölich, Z. Phys, Chem. N. F. 163, 35 (1989)CrossRefGoogle Scholar
  16. 16.
    F.A. Lewis, Plat. Met. Rev. 5, 21 (1961)Google Scholar
  17. 17.
    T.B. Flanagan, Y. Sakamoto, Plat. Met. Rev. 37, 26 (1993)Google Scholar
  18. 18.
    M. Łukaszewski, K. Hubkowska, U. Koss, A. Czerwiński, J. Solid State Electrochem. 16, 2533 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Łukaszewski, M. Grdeń, A. Czerwiński, J. Solid State Electrochem. 9, 1 (2005)CrossRefGoogle Scholar
  20. 20.
    M. Łukaszewski, M. Grdeń, A. Czerwiński, J. Electroanal. Chem. 573, 87 (2004)Google Scholar
  21. 21.
    S. Thiébaut, A. Bigot, J.C. Achard, B. Limacher, D. Leroy, A. Percheron-Guégan, J. Alloy. Compd. 231, 440 (1995)CrossRefGoogle Scholar
  22. 22.
    Y. Sakamoto, K. Ohira, M. Kokubu, T.B. Flanagan, J. Alloy. Compd. 253-254, 212 (1997)CrossRefGoogle Scholar
  23. 23.
    M. Łukaszewski, T. Kędra, A. Czerwiński, Electrochim. Acta 55, 1150 (2010)CrossRefGoogle Scholar
  24. 24.
    J.-W. Lee, S.-I. Pyun, S. Filipek, Electrochim. Acta 48, 1603 (2003)CrossRefGoogle Scholar
  25. 25.
    K. Hubkowska, M. Łukaszewski, A. Czerwiński, J. Electroanal. Chem. 757, 80 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Sakamoto, K. Ohira, N. Ishimaru, F.L. Chen, M. Kokubu, T.B. Flanagan, J. Alloy. Compd. 217, 226 (1995)CrossRefGoogle Scholar
  27. 27.
    D.F. Teter, D.J. Thoma, Metall. Trans. B 31B, 667 (2000)CrossRefGoogle Scholar
  28. 28.
    K. Ohira, Y. Sakamoto, T.B. Flanagan, J. Alloy. Compd. 236, 42 (1996)CrossRefGoogle Scholar
  29. 29.
    K. Hubkowska, M. Łukaszewski, A. Czerwiński, Electrocatalysis 9(5), 593 (2018)CrossRefGoogle Scholar
  30. 30.
    K. Hubkowska, M. Łukaszewski, M. Soszko, U. Koss, B. Hamankiewicz, A. Czerwiński, Materials 11, 798 (2018)CrossRefGoogle Scholar
  31. 31.
    R. Woods, in Electroanalytical Chemistry, ed. by A. J. Bard, vol 9 (Marcel Dekker, New York, 1976), pp. 1–162Google Scholar
  32. 32.
    D.A.J. Rand, R. Woods, J. Electroanal. Chem. 35, 209 (1972)CrossRefGoogle Scholar
  33. 33.
    M. Grdeń, A. Piaścik, Z. Koczorowski, A. Czerwiński, J. Electroanal. Chem. 532, 35 (2002)CrossRefGoogle Scholar
  34. 34.
    Y. Sakamoto, K. Baba, T.B. Flanagan, Z. Phys. Chem. N. F 158, 223 (1988)CrossRefGoogle Scholar
  35. 35.
    Y. Sakamoto, K. Yuwasa, K. Hirayama, J. Less-Common Met. 88, 115 (1982)CrossRefGoogle Scholar
  36. 36.
    I. Moysan, V. Paul-Boncour, S. Thiébaut, E. Sciora, J.M. Fournier, R. Cortes, S. Bourgeois, A. Percheron-Guégan, J. Alloy. Compd. 332, 14 (2001)CrossRefGoogle Scholar
  37. 37.
    D. Clewley, J.F. Lynch, T.B. Flanagan, J. Chem. Soc., Faraday Trans. I 73, 494 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Faculty of ChemistryUniversity of WarsawWarsawPoland
  2. 2.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  3. 3.Faculty of Chemistry, Biological and Chemical Research CentreUniversity of WarsawWarszawaPoland

Personalised recommendations