Advertisement

Electrocatalytic Behavior of Hydrogenated Pd-Metallic Glass Nanofilms: Butler-Volmer, Tafel, and Impedance Analyses

Abstract

Electrocatalytic activity and sorption behavior of hydrogen in nanosized Pd–Si–(Cu) metallic glass thin film and Pd thin film electrodes sputtered on a Si/SiO2 substrate were investigated by linear sweep voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrode MG4 (Pd69Si18Cu13) exhibits the best performance with the highest electrocatalytic activity in the hydrogen evolution region with less than half of the Tafel slope of Pd thin film of the same thickness and lowest overpotential at 10 mA cm−2. A new approach has been adopted by a nonlinear fitting of the entire region of the polarization curve (far- and near-equilibrium cathodic and anodic regions) to the Butler-Volmer model. α parameter is lowest for the MG2 electrode (Pd79Si16Cu5), marking that nonequilibrium conditions change the reaction kinetics. Together with MG2, MG4 shows the lowest Bode magnitude values for hydrogen sorption and evolution regions, indicating that the bonding and release of hydrogen atoms to the electrode is easier. MG4 electrode shows a dramatic decrease of the overpotential after 100 cycles, yielding an increase in hydrogen activity. Besides, MG4 exhibits the sharpest current density drop in the HER region in cyclic voltammetry compared with other MG and Pd electrodes, indicating higher electrocatalytic activity towards hydrogen evolution. The findings highlight the influence of the selected metallic glasses for the design and development of metal catalysts with higher sorption kinetics and/or electrocatalytic turnover.

.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    T. Karchiyappan, Energy sources. Part A 41, 7 (2019)

  2. 2.

    W.C. Sheng, H.A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 157, 11 (2010)

  3. 3.

    R.J. Wei, M. Fang, G.F. Dong, J.C. Ho, Sci. Bull. 62, 14 (2017)

  4. 4.

    W.C. Sheng, M. Myint, J.G.G. Chen, Y.S. Yan, Energy Environ. Sci. 6, 5 (2013)

  5. 5.

    B.E. Conway, L. Bai, J. Electroanal. Chem. 198, 1 (1986)

  6. 6.

    R. Caputo, A. Alavi, Mol. Phys. 101, 11 (2003)

  7. 7.

    B.D. Adams, A.C. Chen, Mater. Today 14, 6 (2011)

  8. 8.

    M.W. Chen, NPG Asia Mater. 3 (2011)

  9. 9.

    Y.C. Hu, Y.Z. Wang, R. Su, C.R. Cao, F. Li, C.W. Sun, Y. Yang, P.F. Guan, D.W. Ding, Z.L. Wang, W.H. Wang, Adv. Mater. 28, 46 (2016)

  10. 10.

    W.C. Xu, S.L. Zhu, Y.Q. Liang, Z.D. Cui, X.J. Yang, A. Inoue, H.X. Wang, J. Mater. Chem. A 5, 35 (2017)

  11. 11.

    G.Q. Yue, Y. Zhang, Y. Sun, B. Shen, F. Dong, Z.Y. Wang, R.J. Zhang, Y.X. Zheng, M.J. Kramer, S.Y. Wang, C.Z. Wang, K.M. Ho, L.Y. Chen, Sci. Rep. 5 (2015)

  12. 12.

    G. Wilde, I.R. Lu, R. Willnecker, Mater. Sci. Eng. A 375 (2004)

  13. 13.

    G. Fiore, L. Battezzati, J. Alloys Compd. 483, 1–2 (2009)

  14. 14.

    A. Takeuchi, A. Inoue, Mater. Trans. 46, 12 (2005)

  15. 15.

    C. Gabrielli, P.P. Grand, A. Lasia, H. Perrot, J. Electrochem. Soc. 151, 11, A1943-A1949 (2004) https://doi.org/10.1149/1.1797037

  16. 16.

    H. Cesiulis, N. Tsyntsaru, A. Ramanavicius, G. Ragoisha, in: Nanostructures and Thin Films for Multifunctional Applications: Technology, Properties and Devices, ed. By I. Tiginyanu, P. Topala, V. Ursakis, (Springer International Publishing, Cham, 2016), p. 3–42

  17. 17.

    A. Lasia, in: Modern Aspects of Electrochemistry, ed. By B.E. Conway, J.O.M. Bockris, R.E. Whites, (Springer US, 1999), p. 143–248

  18. 18.

    B. Sarac, T. Karazehir, M. Mühlbacher, B. Kaynak, C. Gammer, T. Schöberl, A.S. Sarac, J. Eckert, ACS Appl. Energy Mater. 1, 6 (2018)

  19. 19.

    J. Als-Nielsen, D. McMorrow, Elements of Modern X-Ray Physics, Second edn. (Wiley, Ltd Publication, West Sussex, UK, 2011), p. 421

  20. 20.

    R.K. Singh, R. Ramesh, R. Devivaraprasad, A. Chakraborty, M. Neergat, Electrochim. Acta 194 (2016)

  21. 21.

    M. Łukaszewski, K. Hubkowska, U. Koss, A. Czerwiński, J. Solid State Electrochem. 16, 7 (2012)

  22. 22.

    W.C. Sheng, Z.B. Zhuang, M.R. Gao, J. Zheng, J.G.G. Chen, Y.S. Yan, Nat. Commun. 6 (2015)

  23. 23.

    J. Zheng, S.Y. Zhou, S. Gu, B.J. Xu, Y.S. Yan, J. Electrochem. Soc. 163, 6 (2016)

  24. 24.

    S. Henning, J. Herranz, H.A. Gasteiger, J. Electrochem. Soc. 162, 1 (2015)

  25. 25.

    H.A. Gasteiger, N.M. Markovic, P.N. Ross, J. Phys. Chem. 99, 45 (1995)

  26. 26.

    J. Durst, A. Siebel, C. Simon, F. Hasche, J. Herranz, H.A. Gasteiger, Energy Environ. Sci. 7, 7 (2014)

  27. 27.

    S.M. Alia, Y.S. Yan, J. Electrochem. Soc. 162, 8 (2015)

  28. 28.

    D.I. Vaireanu, A. Cojocaru, I. Maior, S. Caprarescu, A. Ionescu, V. Radu, Key Eng. Mater. 415 (2009)

  29. 29.

    S.N. Victoria, S. Ramanathan, Electrochim. Acta 56, 5 (2011)

  30. 30.

    R. Guidelli, R.G. Compton, J.M. Feliu, E. Gileadi, J. Lipkowski, W. Schmickler, S. Trasatti, Pure Appl. Chem. 86, 2 (2014)

  31. 31.

    R. O’Hayre, S.W. Cha, W.G. Colella, F.B. Prinz, in: Fuel Cell Fundametals, ed. By, (Wiley, Hoboken, 2016), p. 89

  32. 32.

    A.J. Bard, L.R. Faulkner, in: Electrochemical Methods: Fundamentals and Applications ed. By, (Wiley, New York, 2001), p. 98–102

  33. 33.

    B.E. Conway, J. Chem. Educ. 39, 8 (1962)

  34. 34.

    R. Parsons, Trans. Faraday Soc. 54, 7 (1958)

  35. 35.

    R. Parsons, in: Manual of Symbols and Terminology for Physicochemical Quantities and Units, ed. By, (International Union of Pure and Applied Chemistry—Division of Physical Chemistry, 1973), p. 500–516

  36. 36.

    A.P. Brown, M. Krumpelt, R.O. Loutfy, N.P. Yao, Electrochim. Acta 27, 5 (1982)

  37. 37.

    M.A. Raj, S. Arumainathan, Vacuum 160, (2019)

  38. 38.

    X.T. Wang, M. Zeng, N. Nollmann, G. Wilde, Z. Tian, C.Y. Tang, AIP Adv. 7, 9 (2017)

  39. 39.

    H. Okamoto, J. Phase Equilib. Diffus. 28, 2 (2007)

  40. 40.

    S. Kajita, S. Yamaura, H. Kimura, A. Inoue, Mater. Trans. 51, 12 (2010)

  41. 41.

    S. Kajita, S. Kohara, Y. Onodera, T. Fukunaga, E. Matsubara, Mater. Trans. 52, 9 (2011)

  42. 42.

    J.L. Tang, Q.H. Zhu, Y.Y. Wang, M. Apreutesei, H. Wang, P. Steyer, M. Chamas, A. Billard, Coatings 7, 12 (2017)

  43. 43.

    L.F.P. Dick, M.B. Lisboa, E.B. Castro, J. Appl. Electrochem. 32, 8 (2002)

  44. 44.

    H. Duncan, A. Lasia, Electrochim. Acta 52, 21 (2007)

  45. 45.

    Y.M. Wang, D.D. Zhao, Y.Q. Zhao, C.L. Xu, H.L. Li, RSC Adv. 2, 3 (2012)

  46. 46.

    J. Liang, Y.C. Yang, J. Zhang, J.J. Wu, P. Dong, J.T. Yuan, G.M. Zhang, J. Lou, Nanoscale 7, 36 (2015)

  47. 47.

    T.G. Kelly, S.T. Hunt, D.V. Esposito, J.G. Chen, Int. J. Hydrogen Energy 38, 14 (2013)

  48. 48.

    K. Yin, Y.F. Cheng, B.B. Jiang, F. Liao, M.W. Shao, J. Colloid Interface Sci. 522 (2018)

  49. 49.

    T. Masuda, Y. Sun, H. Fukumitsu, H. Uehara, S. Takakusagi, W.J. Chun, T. Kondo, K. Asakura, K. Uosaki, J. Phys. Chem. C 120, 29 (2016)

  50. 50.

    S. Burkhardt, M.T. Elm, B. Lani-Wayda, P.J. Klar, Adv. Mater. Interfaces 5, 6 (2018)

  51. 51.

    D. Landolt, in, ed. By, (CRC Press Taylor & Francis Group, Polytechniques et universitaires romandes EPFL, 2007), p. 202–203

  52. 52.

    Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 133, 19 (2011)

  53. 53.

    L. Liao, J. Zhu, X.J. Bian, L.N. Zhu, M.D. Scanlon, H.H. Girault, B.H. Liu, Adv. Funct. Mater. 23, 42 (2013)

  54. 54.

    J. Durst, C. Simon, F. Hasche, H.A. Gasteiger, J. Electrochem. Soc. 162, 1 (2015)

  55. 55.

    J.T. Tian, W. Wu, Z.H. Tang, Y. Wu, R. Burns, B. Tichnell, Z. Liu, S.W. Chen, Catalysts 8, 8 (2018)

  56. 56.

    Z.P. Lu, Y. Li, S.C. Ng, J. Non-Cryst, Solids 270, 1–3 (2000)

  57. 57.

    H.S. Chen, D. Turnbull, Acta Metall. 17, 8 (1969)

  58. 58.

    T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Sci. Rep. 5 (2015)

  59. 59.

    S. Cobo, J. Heidkamp, P.A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave, V. Artero, Nat. Mater. 11, 9 (2012)

  60. 60.

    A. Le Goff, V. Artero, B. Jousselme, P.D. Tran, N. Guillet, R. Metaye, A. Fihri, S. Palacin, M. Fontecave, Science 326, 5958 (2009)

  61. 61.

    D. Voiry, H. Yamaguchi, J.W. Li, R. Silva, D.C.B. Alves, T. Fujita, M.W. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 12, 9 (2013)

  62. 62.

    M.R. Gao, J.X. Liang, Y.R. Zheng, Y.F. Xu, J. Jiang, Q. Gao, J. Li, S.H. Yu, Nat. Commun. 6 (2015)

  63. 63.

    H.W. Liang, S. Bruller, R.H. Dong, J. Zhang, X.L. Feng, K. Mullen, Nat. Commun. 6 (2015)

  64. 64.

    J.P. Hoare, S. Schuldiner, J. Electrochem. Soc. 102, 8 (1955)

  65. 65.

    J.P. Hoare, S. Schuldiner, J. Electrochem. Soc. 103, 4 (1956)

  66. 66.

    J.P. Hoare, S. Schuldiner, J. Electrochem. Soc. 104, 9 (1957)

  67. 67.

    K. Ota, T. Karikomi, H. Yoshitake, N. Kamiya, Denki Kagaku 62, 2 (1994)

  68. 68.

    K. Qi, S.S. Yu, Q.Y. Wang, W. Zhang, J.C. Fan, W.T. Zheng, X.Q. Cui, J. Mater. Chem. A 4, 11 (2016)

  69. 69.

    M.D. Macia, J.M. Campina, E. Herrero, J.M. Feliu, J. Electroanal, Chem. 564, 1–2 (2004)

  70. 70.

    T.J. Schmidt, V. Stamenkovic, N.M. Markovic, P.N. Ross, Electrochim. Acta 48, 25–26 (2003)

  71. 71.

    D. Wang, X. Wang, Y. Lu, C.S. Song, J. Pan, C.L. Li, M.L. Sui, W. Zhao, F.Q. Huang, J. Mater. Chem. A 5, 43 (2017)

  72. 72.

    N. Pentland, J.O. Bockris, E. Sheldon, J. Electrochem. Soc. 103, 9 (1956)

  73. 73.

    J.N. Han, J.W. Lee, M. Seo, S.I. Pyun, J. Electroanal. Chem. 506, 1 (2001)

  74. 74.

    B. Łosiewicz, A. Lasia, J. Electroanal. Chem. 822 (2018)

  75. 75.

    J.L. Tang, X.H. Zhao, Y. Zuo, P.F. Ju, Y.M. Tang, Electrochim. Acta 174 (2015)

  76. 76.

    A. Safavi, S.H. Kazemi, H. Kazemi, Fuel 118, (2014)

  77. 77.

    J.A.S.B. Cardoso, L. Amaral, O. Metin, D.S.P. Cardoso, M. Sevim, T. Sener, C.A.C. Sequeira, D.M.F. Santos, Int. J. Hydrogen Energy 42, 7 (2017)

  78. 78.

    S. Strbac, M. Smiljanic, Z. Rakocevic, J. Electroanal. Chem. 755 (2015)

  79. 79.

    H.B. Liao, C. Wei, J.X. Wang, A. Fisher, T. Sritharan, Z.X. Feng, Z.C.J. Xu, Adv. Energy Mater. 7, 21 (2017)

  80. 80.

    K. Magdić, K. Kvastek, V. Horvat-Radošević, Electrochim. Acta 167 (2015)

Download references

Acknowledgments

The authors would like to thank C. Mitterer for providing the sputtering device for synthesizing the TFMGs, B. Kaynak for determining the compositions of MGTFs using X-ray photoelectron spectroscopy, and T. Schöberl for the technical support of acquiring AFM images.

Funding Information

This work was supported by the European Research Council under the Advanced Grant “INTELHYB-Next Generation of Complex Metallic Materials in Intelligent Hybrid Structures” (Grant No. ERC-2013-ADG-340025).

Author information

Correspondence to Baran Sarac.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.84 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarac, B., Karazehir, T., Mühlbacher, M. et al. Electrocatalytic Behavior of Hydrogenated Pd-Metallic Glass Nanofilms: Butler-Volmer, Tafel, and Impedance Analyses. Electrocatalysis 11, 94–109 (2020) doi:10.1007/s12678-019-00572-z

Download citation

Keywords

  • Metallic glass
  • Thin film
  • Electrocatalysis
  • Tafel plot
  • Butler-Volmer model
  • Electrochemical impedance spectroscopy