Advertisement

Electrocatalysis

, Volume 11, Issue 1, pp 25–34 | Cite as

Preventing the Deactivation of Gold Cathodes During Electrocatalytic CO2 Reduction While Avoiding Gold Dissolution

  • Hani Taleshi Ahangari
  • Aaron T. MarshallEmail author
Original Research

Abstract

The electrochemical reduction of CO2 on gold cathodes was investigated, and the major products were found to be CO, H2 and formate, which is consistent with existing literature. The Faradaic efficiency for CO production decreased from around 60 to 10% over the course of 4 h when the electrolysis was performed at – 5 mA cm–2 in 0.2 M KHCO3 saturated with CO2. This deactivation was accompanied by an increase in the selectivity of the cathode towards H2 and formate production, which is normally attributed to the deposition of metals from trace impurities in the electrolyte or surface-bound species formed during the reaction. In this case, the deactivation was found to be due to the deposition of Cu, Zn and possibly Fe from the electrolyte, with the presence of Fe strongly enhancing H2 production, the Cu deposition increasing the formate production rate and Zn enhancing both H2 and formate production. While the accumulation of these poisons can be prevented with periodic anodic treatments (using methods previously described in the literature), these treatments lead to significant gold dissolution, with up to 450 ppb of gold found in the electrolyte after 4 h of electrolysis, and thus is unsuitable for use in long-term CO2 reduction systems. This dissolution is expected to alter the surface structure and thus selectivity of the cathode. Therefore, alternative electrochemical cleaning protocols (periodic cyclic voltammetry, open-circuit and low anodic current treatments) were investigated as methods to remove these poisons without significant gold corrosion occurring. The best approach to prevent the deactivation of gold cathodes during CO2 reduction is to cycle the potential between − 0.5 and 0.5 V vs Ag|AgCl every 15 min during long-term electrolysis. It is also shown that simply interrupting the CO2 reduction process every 15 min with 4 min at open circuit can also partially prevent the deactivation of the CO2 reduction reaction as will short anodic current pulses.

Graphical abstract

Keywords

CO2 electrochemical reduction CO production Deactivation Gold dissolution 

Notes

Acknowledgements

This work was performed in part at the Australian National Fabrication Facility (ANFF), a company established under the National Collaborative Research Infrastructure Strategy, through the La Trobe University Centre for Materials and Surface Science. We also thank Colin Doyle (University of Auckland) for assistance with XPS analysis samples.

Funding Information

We received funding from MacDiarmid Institute for Advances Materials and Nanotechnology.

References

  1. 1.
    E.E. Benson, C.P. Kubiak, A.J. Sathurn, J.M. Smieja, Chem. Soc. Rev. 38(1), 89–99 (2009)PubMedGoogle Scholar
  2. 2.
    M.R. Dubois, D.L. Dubois, Acc. Chem. Res. 42, 1974–1982 (2009)PubMedGoogle Scholar
  3. 3.
    B. Kumar, M. Liorente, J. Froehlich, T. Dang, A.J. Sathurn, C.P. Kubiak, Annu. Rev. Phys. Chem. 63, 541–569 (2012)PubMedGoogle Scholar
  4. 4.
    E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazabal, J. Perez-Ramirez, Energy Environ. Sci. 6, 3112–3135 (2013)Google Scholar
  5. 5.
    H. Noda, S. Ikeda, Y. Oda, K. Imai, M. Maeda, K. Ito, Chem. Soc. Jpn. 63, 2459–2462 (1990)Google Scholar
  6. 6.
    M. Azuma, K. Hashimoto, M. Hiramoto, J. Electrochem. Soc. 137, 1772–1778 (1990)Google Scholar
  7. 7.
    J. Augustynski, P. Kedzierzawski, B. Jermann, Stud. Surf. Sci. Catal. 114, 107–116 (1998)Google Scholar
  8. 8.
    Y. Hori, A. Murata, R. Takahashi, J. Chem. Soc. Faraday Trans. 85, 2309–2326 (1989)Google Scholar
  9. 9.
    Y. Hori, K. Kikuchi, S. Suzuki, Chem. Soc. Jpn., 1695–1698 (1985)Google Scholar
  10. 10.
    M. Jitaru, D.A. Lowy, M. Toma, B.C. Toma, L. Oniciu, J. Appl. Electrochem. 27, 875–889 (1997)Google Scholar
  11. 11.
    R. Kostecki, J. Augustynski, Ber. Bunsenges. Phys. Chem. 98, 1510–1515 (1994)Google Scholar
  12. 12.
    H. Yano, F. Shirai, M. Nakayama, K. Ogura, J. Electroanal. Chem. 533, 113–118 (2002)Google Scholar
  13. 13.
    B. Jermann, J. Augustynski, Electrochim. Acta 39, 1891–1896 (1994)Google Scholar
  14. 14.
    Y. Hori, H. Konishi, T. Futamura, A. Murata, O. Koga, H. Sakurai, K. Oguma, Electrochim. Acta 50, 5354–5360 (2005)Google Scholar
  15. 15.
    P. Kedzierzawski, J. Augustynski, J. Electrochem. Soc. 141, L58–L60 (1994)Google Scholar
  16. 16.
    Y. Hori, A. Murata, K. Kikuchi, S. Suzuki, J. Chem. Soc. Chem. Commun. 10, 728–729 (1987)Google Scholar
  17. 17.
    Y. Hori, in Modern Aspects of Electrochemistry, ed. by C. G. Vayenas, R. E. White, M. E. Gamboa-Aldeco. Electrochemical CO2 Reduction on Metal Electrodes, vol 42 (Springer, New York, 2008), pp. 89–189Google Scholar
  18. 18.
    W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S.H. Sun, J. Am. Chem. Soc. 135, 16833–16836 (2013)PubMedGoogle Scholar
  19. 19.
    M. Dunwell, L. Qi, J.M. Heyes, J. Rosen, J.G. Chen, Y. Yan, F. Jiao, B. Xu, J. Am. Chem. Soc. 139, 3774–3783 (2017)PubMedGoogle Scholar
  20. 20.
    S. Ikeda, T. Takagi, K. Ito, Bull. Chem. Soc. Jpn. 60, 2517–2522 (1987)Google Scholar
  21. 21.
    Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 39, 1833–1839 (1994)Google Scholar
  22. 22.
    A. Wuttig, Y. Surendranath, ACS Catal. 5, 4479–4484 (2015)Google Scholar
  23. 23.
    R. Shiratsuchi, Y. Aikoh, G. Nogami, J. Electrochem. Soc. 140, 3479–3482 (1993)Google Scholar
  24. 24.
    P. Friebe, P. Bogdanoff, N. Alonso-Vante, H. Tribuysch, J. Catal. 168, 374–385 (1997)Google Scholar
  25. 25.
    J. Lee, Y. Tak, Electrochim. Acta 46, 3015–3022 (2001)Google Scholar
  26. 26.
    Y. Terunuma, A. Saitoh, Y. Momose, J. Electroanal. Chem. 434, 69–75 (1997)Google Scholar
  27. 27.
    Shiratsuchi R. , Ishimaru S. , Nogami G. , Denki Kagaku, 668-70 (1997).Google Scholar
  28. 28.
    B.P. Sullivan, K. Krist, H.E. Guard, Electrochemical and electrocatalytic reactions of carbon dioxide (Elsevier Science Publishers B.V, Amsterdam, 1993)Google Scholar
  29. 29.
    R. Kas, R. Kortlever, H. Yilmaz, M. Koper, G. M, Chem. Commun. 2, 354–358 (2015)Google Scholar
  30. 30.
    D.W. DeWulf, T. Jin, A.J. Bard, J. Electrochem. Soc. 136, 1686–1691 (1989)Google Scholar
  31. 31.
    S. Wasmus, E. Cattaneo, W. Vielstich, Electrochim. Acta 35, 771–775 (1990)Google Scholar
  32. 32.
    G. Kyriacou, A. Anagnostopoulos, J. Electroanal. Chem. 322, 233–246 (1992)Google Scholar
  33. 33.
    J.F. Xie, Y.X. Huang, W.W. Li, X.N. Song, L. Xiong, H.Q. Yu, Electrochim. Acta 139, 137–144 (2014)Google Scholar
  34. 34.
    C.F.C. Lim, D.A. Harrington, A.T. Marshall, Electrochim. Acta 222, 133–140 (2016)Google Scholar
  35. 35.
    L. Qi, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen, F. Jiao, Nat. Commun. 5 (2014)Google Scholar
  36. 36.
    E.A. Batista, M.L. Temperini, J. Electroanal. Chem. 629, 158–163 (2009)Google Scholar
  37. 37.
    J.C. Hoogvliet, M. Dijksma, B. Kamp, W.P. van Bennekom, Anal. Chem. 72(9), 2016–2021 (2000)PubMedGoogle Scholar
  38. 38.
    E.R. Cave, J.H. Montoya, K.P. Kuhl, D.N. Abram, T. Hatsukade, C. Shi, C. Hahn, J.K. Norskov, T. Jaramillo, Phys. Chem. Chem. Phys. 19(24), 15856–15863 (2017)PubMedGoogle Scholar
  39. 39.
    S. Cherevko, A.A. Topalov, I. Katsounaros, K.J. Mayrhofer, Electrochem. Commun. 28, 44–46 (2013)Google Scholar
  40. 40.
    D.A.J. Rand, R. Woods, J. Electroanal. Chem. Interfacial Electrochem. 35, 209–218 (1972)Google Scholar
  41. 41.
    S. Cherevko, A.A. Topalov, A.R. Zeradjanin, I. Katsounaros, K.J. Mayrhofer, J. R. Soc. Chem. 3, 16516–16527 (2013)Google Scholar
  42. 42.
    S. Cherevko, A.R. Zeradjanin, G.P. Keeley, K.J. Mayrhofer, J. Electrochem. Soc. 161, H822–H830 (2014)Google Scholar
  43. 43.
    A.C. Cruickshank, A.J. Downard, Electrochim. Acta 54, 5566–5570 (2009)Google Scholar
  44. 44.
    J.T. Steven, V.B. Golovko, B. Johannessen, A.T. Marshall, Electrochim. Acta 187, 593–604 (2016)Google Scholar
  45. 45.
    Y. Wang, E. Laborda, A. Crossley, R.G. Compton, Phys. Chem. Chem. Phys. Commun. 15 (2013)PubMedGoogle Scholar
  46. 46.
    K. Kodama, A. Beniya, N. Isomura, Y. Watanabe, Electrocatalysis, 1–9 (2018)Google Scholar
  47. 47.
    C.F.C. Lim, D.A. Harrington, A.T. Marshall, Electrochim. Acta 238, 56–63 (2017)Google Scholar
  48. 48.
    H. Noda, S. Ikeda, A. Yamamoto, H. Einaga, K. Ito, Bull. Chem. Soc. Jpn. 68, 1889–1895 (1995)Google Scholar
  49. 49.
    J.J. Wu, S. Sun, X.D. Zhou, Nano Energy 27, 225–229 (2016)Google Scholar
  50. 50.
    M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe, T. Sakata, J. Electrochem. Soc. 137, 1772–1778 (1990)Google Scholar
  51. 51.
    P. Rodriguez, M. Koper, Phys. Chem. Chem. Phys. 16(27), 13583–13594 (2014)PubMedGoogle Scholar
  52. 52.
    P. Rodriguez, N.G. Araez, M. Koper, Phys. Chem. Chem. Phys. 12(32), 9373–9380 (2010)PubMedGoogle Scholar
  53. 53.
    P. Rodriguez, A. Koverga, M. Koper, Angew. Chem. Int. Ed. 49(7), 1241–1243 (2010)Google Scholar
  54. 54.
    G.J. Edens, A. Hamelin, M.J. Weaver, J. Phys. Chem. 100, 2322–2329 (1996)Google Scholar
  55. 55.
    N. Gupta, M. Gattrell, B. MacDougall, J. Appl. Electrochem. 36, 161–172 (2006)Google Scholar
  56. 56.
    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press, 1966)Google Scholar
  57. 57.
    S. González, M. Pérez, M. Barrera, A.R. González Elipe, R.M. Souto, J. Phys. Chem. B 102, 5483–5489 (1998)Google Scholar
  58. 58.
    N. Batina, D.M. Kolb, R.J. Nichols, Langmuir 8, 2572–2576 (1992)Google Scholar
  59. 59.
    J.E.T. Andersen, G. Bech-Nielsen, P. Møller, J.C. Reeve, J. Appl. Electrochem. 26, 161–170 (1996)Google Scholar
  60. 60.
    Y. Chen, Y. Huang, T. Cheng, W.A. Goddard, J. Am. Chem. Soc. (2019)Google Scholar
  61. 61.
    S. Back, M.S. Yeom, Y. Jung, ACS Catal. 5, 5089–5096 (2015)Google Scholar
  62. 62.
    W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A.A. Peterson, S. Sun, J. Am. Chem. Soc. 136, 16132–16135 (2014)PubMedGoogle Scholar
  63. 63.
    T. Cheng, Y. Huang, H. Xiao, W.A. Goddard, J. Phys. Chem. Lett. 8, 3317–3320 (2017)PubMedGoogle Scholar
  64. 64.
    H.C. Patel, A.N. Tabish, F. Comelli, P.V. Aravind, Appl. Energy 154, 912–920 (2015)Google Scholar
  65. 65.
    J.W. Vickers, D. Alfonso, D.R. Kauffman, Energy Technol. 5, 775–795 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical and Process Engineering, The MacDiarmid Institute for Advanced Materials and NanotechnologyUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations