Cobalt-Pyrazolate-Derived N-Doped Porous Carbon with Embedded Cobalt Oxides for Enhanced Oxygen Evolution Reaction

  • Sumbal Farid
  • Weiwei Qiu
  • Jialin Zhao
  • Dandan Wu
  • Xuedan Song
  • Suzhen RenEmail author
  • Ce HaoEmail author
Original Research


Developing highly competent and cost-effective electrocatalysts for oxygen evolution reaction (OER) is crucial for clean renewable energy technologies. To this end, the wise assimilation of transition metal compounds with carbon materials is a promising approach to prepare efficient electrocatalysts. Here, we report a facile and cost-effective solvothermal route to synthesize cobalt-pyrazolate framework (Co(pz)) followed by thermal treatment in the air to yield N-doped porous carbon encapsulating uniform cobalt oxides nanoparticles (Co3O4/N–C). The resulting composite material is evaluated as electrocatalyst for the OER in basic media with a low onset potential of ~ 1.52 V (vs. RHE), very small Tafel slope of 44 mV dec−1, and overpotential of only 390 mV to achieve a stable current density of 10 mA cm−2 in 1.0 M KOH. The achieved superior oxygen evolution activity in comparison with the state-of-the-art noble metal catalysts originates from in situ incorporation of metal oxides into highly porous carbon matrix, resulting in strong synergistic effects between Co3O4 and N-doped carbon with ordered mesoporous structure leading to the enhanced charge transport and conductivity, and high structural stability. The excellent electrocatalytic performance and superior stability make the Co3O4/N–C a promising non-precious electrode material for the OER.

Graphical Abstract

Nitrogen-doped porous carbon microspheres encapsulating uniform cobalt oxides nanoparticles (Co3O4/N–C) were prepared by a simple thermal treatment of a cobalt-pyrazolate framework in air and evaluated as highly competent electrocatalyst for oxygen evolution reaction.


Oxygen evolution reaction Non-precious electrocatalysts Cobalt-pyrazolate framework Cobalt oxides/carbon materials Nitrogen-doping 


Funding Information

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21677029).


  1. 1.
    J.J. Ban, G.C. Xu, L. Zhang, G. Xu, L.J. Yang, Z.P. Sun, D.Z. Jia, Efficient Co-N/PC@CNT bifunctional electrocatalytic materials for oxygen reduction and oxygen evolution reactions based on metal-organic frameworks. Nanoscale 10(19), 9077–9086 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    J.K. Cong, H. Xu, M.T. Lu, Y.H. Wu, Y.W. Li, P.P. He, J.K. Gao, J.M. Yao, S.Q. Xu, Two-dimensional Co@N-carbon nanocomposites facilely derived from metal-organic framework nanosheets for efficient bifunctional electrocatalysis. Chem. Asian J. 13(11), 1485–1491 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    J. Rong, F. Qiu, T. Zhang, Y. Zhu, J.C. Xu, Q. Guo, X.M. Peng, Non-noble metal@carbon nanosheet derived from exfoliated MOF crystal as highly reactive and stable heterogeneous catalyst. Appl. Surf. Sci. 447, 222–234 (2018)CrossRefGoogle Scholar
  4. 4.
    Y.X. Zhao, Q.X. Lai, J.J. Zhu, J. Zhong, Z.M. Tang, Y. Luo, Y.Y. Liang, Controllable construction of core-shell polymer@zeolitic imidazolate frameworks fiber derived heteroatom-doped carbon nanofiber network for efficient oxygen electrocatalysis. Small 14(19), 1704207 (2018)CrossRefGoogle Scholar
  5. 5.
    R. Wang, X.Y. Sun, B.S. Zhang, X.Y. Sun, D.S. Su, Hybrid nanocarbon as a catalyst for direct dehydrogenation of propane: Formation of an active and selective core-shell sp2/sp3 nanocomposite structure. Chem. Eur. J. 20(21), 6324–6331 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    W.J. Xu, F.L. Lyu, Y.C. Bai, A.Q. Gao, J. Feng, Z.X. Cai, Y.D. Yin, Porous cobalt oxide nanoplates enriched with oxygen vacancies for oxygen evolution reaction. Nano Energy 43, 110–116 (2018)CrossRefGoogle Scholar
  7. 7.
    F.L. Yang, P.P. Zhao, X. Hua, W. Luo, G.Z. Cheng, W. Xing, S.L. Chen, A cobalt-based hybrid electrocatalyst derived from a carbon nanotube inserted metal-organic framework for efficient water-splitting. J. Mater. Chem. 4(41), 16057–16063 (2016)CrossRefGoogle Scholar
  8. 8.
    L.Y. Wang, C.D. Gu, X. Ge, J.L. Zhang, H.Y. Zhu, J.P. Tu, Highly efficient bifunctional catalyst of NiCo2O4@NiO@Ni core/shell nanocone array for stable overall water splitting. Part. Part. Syst. Charact. 34(11), 1700228 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Bajdich, M. Garcia-Mota, A. Vojvodic, J.K. Norskov, A.T. Bell, Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135(36), 13521–13530 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    G. Mattioli, P. Giannozzi, A.A. Bonapasta, L. Guidonili, Reaction pathways for oxygen evolution promoted by cobalt catalyst. J. Am. Chem. Soc. 135(41), 15353–15363 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    M. Schilling, S. Luber, Computational modeling of cobalt-based water oxidation: Current status and future challenges. Front. Chem. 6(100) (2018)Google Scholar
  12. 12.
    Y.C. Tang, R.L. Liu, S.H. Liu, B.N. Zheng, Y.H. Lu, R.W. Fu, D.C. Wu, M.Q. Zhang, M.Z. Rong, Cobalt and nitrogen codoped ultrathin porous carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. Carbon 141, 704–711 (2019)CrossRefGoogle Scholar
  13. 13.
    H. Sun, G. Chen, Y. Zhu, B. Liu, W. Zhou, Z. Shao, B-site cation ordered double perovskites as efficient and stable electrocatalysts for oxygen evolution reaction. Chem. Eur. J. 23(24), 5722–5728 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    H.N. Sun, J. He, Z.W. Hu, C.T. Chen, W. Zhou, Z.P. Shao, Multi-active sites derived from a single/double perovskite hybrid for highly efficient water oxidation. Electrochim. Acta 299, 926–932 (2019)CrossRefGoogle Scholar
  15. 15.
    L. Liu, Y.Q. Ou, D. Gao, L. Yang, H.M. Dong, P. Xiao, Y.H. Zhang, Surface engineering by a novel electrochemical activation method for the synthesis of Co3+ enriched Co(OH)2/CoOOH heterostructure for water oxidation. J. Power Sources 396, 395–403 (2018)CrossRefGoogle Scholar
  16. 16.
    J.H. Zhang, F. Li, W.B. Chen, C.S. Wang, D.D. Cai, Facile synthesis of hollow Co3O4-embedded carbon/reduced graphene oxides nanocomposites for use as efficient electrocatalysts in oxygen evolution reaction. Electrochim. Acta 300, 123–130 (2019)CrossRefGoogle Scholar
  17. 17.
    A.S. Walton, J. Fester, M. Bajdich, M.A. Arman, J. Osiecki, J. Knudsen, A. Vojvodic, J.V. Lauritsen, Interface controlled oxidation states in layered cobalt oxide nanoislands on gold. ACS Nano 9(3), 2445–2453 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    X.Z. Li, Y.Y. Fang, L.X. Wen, F. Li, G.L. Yin, W.M. Chen, X.C. An, J. Jin, J.T. Ma, Co@Co3O4 core-shell particle encapsulated N-doped mesoporous carbon cage hybrids as active and durable oxygen-evolving catalysts. Dalton Trans. 45(13), 5575–5582 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    S. Farid, S.Z. Ren, C. Hao, MOF-derived metal/carbon materials as oxygen evolution reaction catalysts. Inorg. Chem. Commun. 94, 57–74 (2018)CrossRefGoogle Scholar
  20. 20.
    L.H. Ai, T. Tian, J. Jiang, Ultrathin graphene layers encapsulating nickel nanoparticles derived metal-organic frameworks for highly efficient electrocatalytic hydrogen and oxygen evolution reactions. ACS Sustain. Chem. Eng. 5(6), 4771–4777 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Kuang, Q.H. Wang, P. Han, G.F. Zheng, Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv. Energy Mater. 7(17), 1700193 (2017)CrossRefGoogle Scholar
  22. 22.
    Z.Y. Wu, S.L. Xu, Q.Q. Yan, Z.Q. Chen, Y.W. Ding, C. Li, H.W. Liang, S.H. Yu, Transition metal-assisted carbonization of small organic molecules toward functional carbon materials. Sci. Adv. 4, 0788 (2018)Google Scholar
  23. 23.
    N. Masciocchi, G.A. Ardizzoia, S. Brenna, G. LaMonica, A. Maspero, S. Galli, A. Sironi, One-dimensional polymers containing strictly collinear metal ions: Synthesis and XRPD characterization of homoleptic binary metal pyrazolates. Inorg. Chem. 41(23), 6080–6089 (2002)PubMedCrossRefGoogle Scholar
  24. 24.
    M. Basu, In-situ developed carbon spheres function as promising support for enhanced activity of cobalt oxide in oxygen evolution reaction. J. Colloid Interface Sci. 530, 264–273 (2018)PubMedCrossRefGoogle Scholar
  25. 25.
    S. Liu, X.W. Chen, S. Wang, Z. Yang, J.X. Gao, P. Zhu, X.S. Zhao, G.X. Wang, 3D CNTs-threaded N-doped hierarchical porous carbon hybrid with embedded Co/CoOx nanoparticles as efficient bifunctional catalysts for oxygen electrode reactions. Electrochim. Acta 292, 707–717 (2018)CrossRefGoogle Scholar
  26. 26.
    N. Masciocchi, S. Galli, V. Colombo, A. Maspero, G. Palmisano, B. Seyyedi, C. Lamberti, S. Bordiga, Cubic octanuclear Ni(II) clusters in highly porous polypyrazolyl-based materials. J. Am. Chem. Soc. 132(23), 7902–7904 (2010)PubMedCrossRefGoogle Scholar
  27. 27.
    Y. Hou, Z.H. Wen, S.M. Cui, S.Q. Ci, S. Mao, J.H. Chen, An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 25(6), 872–882 (2015)CrossRefGoogle Scholar
  28. 28.
    S.J. Liu, T. Deng, X.Y. Hu, X.Y. Shi, H.X. Wang, T.T. Qin, X.X. Zhang, J.G. Qi, W. Zhang, W.T. Zheng, Increasing surface active Co2+ sites of MOF-derived Co3O4 for enhanced supercapacitive performance via NaBH4 reduction. Electrochim. Acta 289, 319–323 (2018)CrossRefGoogle Scholar
  29. 29.
    X.Z. Li, Y.Y. Fang, X.Q. Lin, M. Tian, X.C. An, Y. Fu, R. Li, J. Jin, J.T. Ma, MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: Extraordinary bi-functional electrocatalysts for OER and ORR. J. Mater. Chem. A 3(33), 17392–17402 (2015)CrossRefGoogle Scholar
  30. 30.
    H.Y. Jing, X.D. Song, S.Z. Ren, Y.T. Shi, Y.L. An, Y. Yang, M.Q. Feng, S.B. Ma, C. Hao, ZIF-67 derived nanostructures of Co/CoO and Co@N-doped graphitic carbon as counter electrode for highly efficient dye-sensitized solar cells. Electrochim. Acta 213, 252–259 (2016)CrossRefGoogle Scholar
  31. 31.
    N.U. Sri, K. Chaitanya, M.V.S. Prasad, V. Veeraiah, A. Veeraiah, Experimental (FT-IR, FT-Raman and UV-Vis spectra) and density functional theory calculations of diethyl 1H-pyrazole-3,5-dicarboxylate. J. Mol. Struct. 1019, 68–79 (2012)CrossRefGoogle Scholar
  32. 32.
    L.L. Li, T. Tian, J. Jiang, L.H. Ai, Hierarchically porous Co3O4 architectures with honeycomb-like structures for efficient oxygen generation from electrochemical water splitting. J. Power Sources 294, 103–111 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Kundu, M.D. Mukadam, S.M. Yusuf, M. Jayachandran, Formation of shape-selective magnetic cobalt oxide nanowires: Environmental application in catalysis studies. Crystengcomm 15(3), 482–497 (2013)CrossRefGoogle Scholar
  34. 34.
    F. Manteghi, S.H. Kazemi, M. Peyvandipour, A. Asghari, Preparation and application of cobalt oxide nanostructures as electrode materials for electrochemical supercapacitors. RSC Adv. 5(93), 76458–76463 (2015)CrossRefGoogle Scholar
  35. 35.
    T. Huang, Y. Chen, J.M. Lee, A microribbon hybrid structure of CoOx-MoC encapsulated in N-doped carbon nanowire derived from MOF as efficient oxygen evolution electrocatalysts. Small 13, 1702821 (2017)CrossRefGoogle Scholar
  36. 36.
    I.S. Amiinu, X.B. Liu, Z.H. Pu, W.Q. Li, Q.D. Li, J. Zhang, H.L. Tang, H.N. Zhang, S.C. Mu, From 3D ZIF nanocrystals to Co-N-x/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 28(5), 1704638 (2018)CrossRefGoogle Scholar
  37. 37.
    N. Sikdar, B. Konkena, J. Masa, W. Schuhmann, T.K. Maji, Co3O4@Co/NCNT nanostructure derived from a dicyanamide-based metal-organic framework as an efficient bi-functional electrocatalyst for oxygen reduction and evolution reactions. Chem. Eur. J. 23(71), 18049–18056 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    L.J. Zhang, T.Q. Mi, M.A. Ziaee, L.F. Liang, R.H. Wang, Hollow POM@MOF hybrid-derived porous Co3O4/CoMoO4 nanocages for enhanced electrocatalytic water oxidation. J. Mater. Chem. A 6(4), 1639–1647 (2018)CrossRefGoogle Scholar
  39. 39.
    Z.H. Zhao, Y.Q. Huang, Y.X. Fan, K.Q. Lai, Rapid detection of flusilazole in pears with Au@Ag nanoparticles for surface-enhanced Raman scattering. Nanomaterials 8(2), 94 (2018)PubMedCentralCrossRefGoogle Scholar
  40. 40.
    E.G. Dai, J. Xu, J.J. Qiu, S.C. Liu, P. Chen, Y. Liu, Co@Carbon and Co3O4@Carbon nanocomposites derived from a single MOF for supercapacitors. Sci. Rep. 7(1), 12588 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    J. Tang, S.C. Wu, T. Wang, H. Gong, H.B. Zhang, S.M. Alshehri, T. Ahamad, H.S. Zhou, Y. Yamauchi, Cage-type highly graphitic porous carbon-Co3O4 polyhedron as the cathode of lithium oxygen batteries. ACS Appl. Mater. Interfaces 8(4), 2796–2804 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    C.L. Dong, X.T. Yuan, X. Wang, X.Y. Liu, W.J. Dong, R.Q. Wang, Y.H. Duan, F.Q. Huang, Rational design of cobalt-chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation. J. Mater. Chem. A 4(29), 11292–11298 (2016)CrossRefGoogle Scholar
  43. 43.
    S.Z. Ren, Y.N. Guo, S.B. Ma, Q. Mao, D.D. Wu, Y. Yang, H.Y. Jing, X.D. Song, C. Hao, Co3O4 nanoparticles assembled on polypyrrole/graphene oxide for electrochemical reduction of oxygen in alkaline media. Chin. J. Catal. 38(7), 1281–1290 (2017)CrossRefGoogle Scholar
  44. 44.
    M. Hassan, D.D. Wu, X.D. Song, W.W. Qiu, Q. Mao, S.Z. Ren, C. Hao, Polyaniline-derived metal-free hollow nitrogen-doped carbon microspheres as an efficient electrocatalyst for supercapacitors and oxygen reduction. J. Electroanal. Chem. 829, 157–167 (2018)CrossRefGoogle Scholar
  45. 45.
    X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem. Int. Ed. 55(21), 6290–6294 (2016)CrossRefGoogle Scholar
  46. 46.
    Y. Zhang, J.W. Huang, Y. Ding, Porous Co3O4/CuO hollow polyhedral nanocages derived from metal-organic frameworks with heterojunctions as efficient photocatalytic water oxidation catalysts. Appl. Catal. Environ. B. 198, 447–456 (2016)CrossRefGoogle Scholar
  47. 47.
    C.L. Xiao, Y.B. Li, X.Y. Lu, C. Zhao, Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Adv. Funct. Mater. 26(20), 3515–3523 (2016)CrossRefGoogle Scholar
  48. 48.
    Z. Yu, Y. Bai, Y.X. Liu, S.M. Zhang, D.D. Chen, N.Q. Zhang, K.N. Sun, Metal-organic-framework-derived yolk-shell-structured cobalt-based bimetallic oxide polyhedron with high activity for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 9(37), 31777–31785 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Y.Y. Lu, W.W. Zhan, Y. He, Y.T. Wang, X.J. Kong, Q. Kuang, Z.X. Xie, L.S. Zheng, MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 6(6), 4186–4195 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Z.X. Wu, J. Wang, L.L. Han, R.Q. Lin, H.F. Liu, H.L.L. Xin, D.L. Wang, Supramolecular gel-assisted synthesis of double shelled Co@CoO@N-C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction. Nanoscale 8(8), 4681–4687 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    G. Xu, G.C. Xu, J.J. Ban, L. Zhang, H. Lin, C.L. Qi, Z.P. Sun, D.Z. Jia, Cobalt and cobalt oxides N-codoped porous carbon derived from metal-organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions. J. Colloid Interface Sci. 521, 141–149 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    X.D. Wang, Y.Y. Zheng, J.H. Yuan, J.F. Shen, A.J. Wang, L. Niu, S.T. Huang, Uniform deposition of Co3O4 nanosheets on exfoliated MoS2 nanosheets as advanced catalysts for water splitting. Electrochim. Acta 212, 890–897 (2016)CrossRefGoogle Scholar
  53. 53.
    A. Jayakumar, R.P. Antony, J. Zhao, J.M. Lee, MOF-derived nickel and cobalt metal nanoparticles in a N-doped coral shaped carbon matrix of coconut leaf sheath origin for high performance supercapacitors and OER catalysis. Electrochim. Acta 265, 336–347 (2018)CrossRefGoogle Scholar
  54. 54.
    Y.N. Chen, Y.B. Guo, H.J. Cui, Z.J. Xie, X. Zhang, J.P. Wei, Z. Zhou, Bifunctional electrocatalysts of MOF-derived Co-N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn-air batteries. J. Mater. Chem. A 6(20), 9716–9722 (2018)CrossRefGoogle Scholar
  55. 55.
    D. Dong, Y. Liu, J.H. Li, Co3O4 hollow polyhedrons as bifunctional electrocatalysts for reduction and evolution reactions of oxygen. Part. Part. Syst. Charact. 33(12), 887–895 (2016)CrossRefGoogle Scholar
  56. 56.
    Y. Hou, J.Y. Li, Z.H. Wen, S.M. Cui, C. Yuan, J.H. Chen, Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy 12, 1–8 (2015)CrossRefGoogle Scholar
  57. 57.
    S.H. Liu, Z.Y. Wang, S. Zhou, F.J. Yu, M.Z. Yu, C.Y. Chiang, W.Z. Zhou, J.J. Zhao, J.S. Qiu, Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 29(31), 1700874 (2017)CrossRefGoogle Scholar
  58. 58.
    Y.C. Hao, Y.Q. Xu, J.F. Liu, X.M. Sun, Nickel-cobalt oxides supported on Co/N decorated graphene as an excellent bifunctional oxygen catalyst. J. Mater. Chem. A 5(11), 5594–5600 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianChina

Personalised recommendations