Effects of Crystallographic Structures of Metal-Phthalocyanine on Electrocatalytic Properties of Oxygen Reduction in Acidic Condition

  • Satoko Takase
  • Yuki Aoto
  • Daiki Ikeda
  • Hideaki Wakita
  • Youichi ShimizuEmail author
Original Research


Effects of the crystallographic structures of metal-phthalocyanines (metal: Co, Ni, Cu, Zn) between α and β phases on electrochemical oxygen reduction catalytic activities were investigated in acidic condition. As the distances of centered-metal in the structures of α and β phases are 3.8 Å and 4.8 Å, respectively, they were closed to the size of an oxygen molecule (3.6 Å). The phases of metal-phthalocyanines were conducted by an interface deposition method. The obtained catalyst powders were characterized by means of X-ray diffraction and X-ray photoelectron spectra analyses. Electrochemical oxygen reduction performances were mainly measured by using a gas diffusion type carbon electrode loaded with a metal-phthalocyanine. It was confirmed that the catalytic activities of cobalt- and copper-centered phthalocyanines were enhanced by the conversion from β to α phases. The effects of the distance between the metals in the crystallographic structures of metal-phthalocyanines should be explained by the adsorbed oxygen states that depend on the distance between the metals. The α phase has the distance which allows to form the bridge configuration of oxygen molecule which requires two adsorption sites and that eventually produces H2O by the direct 4-electron pathway. Analysis with the rotating disk electrode system showed that the α-phased metal-phthalocyanines enhance the 4-electron reduction pathway.

Graphical abstract



Metal-phthalocyanine Oxygen reduction reaction Crystallographic structure α phase β phase 


Funding Information

This work was partially supported by JSPS KAKENHI Grant Numbers JP26410207, JP17750183, and JST A-STEP Grant Number AS232Z00312B.


  1. 1.
    T. Enokida, R. Hirohashi, Cobalt phthalocyanine crystal synthesized at low temperature. Chem. Mater. 3(5), 918–921 (1991)CrossRefGoogle Scholar
  2. 2.
    H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, D. Su, Y. Shao, G. Wu, Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 139, 14143 (2017)CrossRefGoogle Scholar
  3. 3.
    E. Yeager, Electrocatalysts for O2 reduction. Electrochim. Acta 29(11), 1527–1537 (1984)CrossRefGoogle Scholar
  4. 4.
    J.-H. Kim, A. Ishihara, S. Mitsushima, N. Kamiya, K.-I. Ota, Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electrochim. Acta 52(7), 2492–2497 (2007)CrossRefGoogle Scholar
  5. 5.
    M. Watanabe, M. Tomikawa, S. Motoo, Experimental analysis of the reaction layer structure in a gas diffusion electrode. J. Electroanal. Chem. 195(1), 81–93 (1985)CrossRefGoogle Scholar
  6. 6.
    M. Watanabe, H. Sei, P. Stonehart, The influence of platinum crystallite size on the electroreduction of oxygen. J. Electroanal. Chem. 261(2), 375–387 (1989)CrossRefGoogle Scholar
  7. 7.
    K. Elumeeva, J. Masa, J. Sierau, F. Tietz, M. Muhler, W. Schuhmann, Perovskite-based bifunctional electrocatalysts for oxygen evolution and oxygen reduction in alkaline electrolytes. Electrochim. Acta 208, 25–32 (2016)CrossRefGoogle Scholar
  8. 8.
    H. Yano, M. Kataoka, H. Yamashita, H. Uchida, M. Watanabe, Oxygen reduction activity of carbon-supported Pt−M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Langmuir 23(11), 6438–6445 (2007)CrossRefGoogle Scholar
  9. 9.
    H.R. Byon, J. Suntivich, Y. Shao-Horn, Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem. Mater. 23(15), 3421–3428 (2011)CrossRefGoogle Scholar
  10. 10.
    K. Fujii, Y. Sato, S. Takase, Y. Shimizu, Effects of oxygen vacancies and reaction conditions on oxygen reduction reaction on pyrochlore-type lead-ruthenium oxide. J. Electrochem. Soc. 162(1), F129–F135 (2015)CrossRefGoogle Scholar
  11. 11.
    M.J. Trahan, Q. Jia, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, Cobalt Phthalocyanine catalyzed lithium-air batteries. J. Electrochem. Soc. 160(9), A1577–A1586 (2013)CrossRefGoogle Scholar
  12. 12.
    T. Toda, H. Igarashi, M. Watanabe, Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys. J. Electroanal. Chem. 460(1-2), 258–262 (1999)CrossRefGoogle Scholar
  13. 13.
    S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat, C.-J. Liu, A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 5(5), 1808–1825 (2017)CrossRefGoogle Scholar
  14. 14.
    N. Alonso Vante, H. Tributsch, Erratum: Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 324(6096), 491 (1986)CrossRefGoogle Scholar
  15. 15.
    U.I. Kramm, J. Herranz, N. Larouche, T.M. Arruda, M. Lefèvre, F. Jaouen, P. Bogdanoff, S. Fiechter, I. Abs-Wurmbach, S. Mukerjee, J.-P. Dodelet, Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells. Phys. Chem. Chem. Phys. 14(33), 11673 (2012)CrossRefGoogle Scholar
  16. 16.
    K. Lee, A. Ishihara, S. Mitsushima, N. Kamiya, K.-I. Ota, Stability and electrocatalytic activity for oxygen reduction in WC + Ta catalyst. Electrochim. Acta 49(21), 3479–3485 (2004)CrossRefGoogle Scholar
  17. 17.
    R. Jasinski, Cobalt phthalocyanine as a fuel cell cathode. J. Electrochem. Soc. 112(5), 526 (1965)CrossRefGoogle Scholar
  18. 18.
    A. Kozawa, V.E. Zilionis, R.J. Brodd, Oxygen and hydrogen peroxide reduction at a ferric phthalocyanine-catalyzed graphite electrode. J. Electrochem. Soc. 117(12), 1470 (1970)CrossRefGoogle Scholar
  19. 19.
    J.A.R. van Veen, C. Visser, Oxygen reduction on monomeric transition metal phthalocyanines in acid electrolyte. Electrochim. Acta 24(9), 921–928 (1979)CrossRefGoogle Scholar
  20. 20.
    A. Elzing, A. van der Putten, W. Visscher, E. Barendrecht, The cathodic reduction of oxygen at cobalt phthalocyanine. J. Electroanal. Chem. 200(1-2), 313–322 (1986)CrossRefGoogle Scholar
  21. 21.
    S. Baranton, C. Coutanceau, C. Roux, F. Hahn, J.-M. Léger, Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. J. Electroanal. Chem. 577(2), 223–234 (2005)CrossRefGoogle Scholar
  22. 22.
    M. Kobayashi, H. Niwa, M. Saito, Y. Harada, M. Oshima, H. Ofuchi, K. Terakura, T. Ikeda, Y. Koshigoe, J.-I. Ozaki, S. Miyata, Indirect contribution of transition metal towards oxygen reduction reaction activity in iron phthalocyanine-based carbon catalysts for polymer electrolyte fuel cells. Electrochim. Acta 74, 254–259 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Zagal, M. Páez, A.A. Tanaka, J.R. dos Santos Jr., C.A. Linkous, Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J. Electroanal. Chem. 339(1-2), 13–30 (1992)CrossRefGoogle Scholar
  24. 24.
    R. Hoffmann, M. M.-L. Chen, and D. L. Thorn, Inorg. Chem. 16, 503 (1977)Google Scholar
  25. 25.
    M.-S. Liao, S. Scheiner, Electronic structure and bonding in metal phthalocyanines, Metal=Fe, Co, Ni, Cu, Zn, Mg. J. Chem. Phys. 114(22), 9780–9791 (2001)CrossRefGoogle Scholar
  26. 26.
    J.H. Zagal, S. Griveau, J.F. Silva, T. Nyokong, F. Bedioui, Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord. Chem. Rev. 254(23-24), 2755–2791 (2010)CrossRefGoogle Scholar
  27. 27.
    R. Chen, H. Li, D. Chu, G. Wang, Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine Catalysts in alkaline solutions. J. Phys. Chem. C 113, 20689 (2009)CrossRefGoogle Scholar
  28. 28.
    N.A. Karim, S.K. Kamarudin, L.K. Shyuan, Z. Yaakob, W.R.W. Daud, A.A.H. Khadum, Novel cathode catalyst for DMFC: study of the density of states of oxygen adsorption using density functional theory. Int. J. Hydrog. Energy 39, 17295 (2014)CrossRefGoogle Scholar
  29. 29.
    Z. Zhang, S. Yang, M. Dou, H. Liu, L. Gu, F. Wang, Systematic study of transition-metal (Fe, Co, Ni, Cu) phthalocyanines as electrocatalysts for oxygen reduction and their evaluation by DFT. RSC Adv. 6, 67049 (2016)CrossRefGoogle Scholar
  30. 30.
    C. Ercolani, C. Neri, P. Porta, Synthesis and x-ray data of a stable in air crystalline modification of chromium(II) phthalocyanine (Cr-α-Pc). Inorg. Chim. Acta 1, 415–418 (1967)CrossRefGoogle Scholar
  31. 31.
    P. Ballirano, R. Caminiti, C. Ercolani, A. Maras, M.A. Orrù, X-ray powder diffraction structure reinvestigation of the α and β forms of cobalt phthalocyanine and kinetics of the α → β phase transition. J. Am. Chem. Soc. 120, 12798 (1998)CrossRefGoogle Scholar
  32. 32.
    N. Uyeda, M. Ashida, E. Suito, Orientation overgrowth of condensed polycyclic aromatic compounds vacuum‐evaporated onto cleaved face of mica. J. Appl. Phys. 36(4), 1453–1460 (1965)CrossRefGoogle Scholar
  33. 33.
    H. Yamanouchi, K. Irie, T. Saji, Chem. Lett. 1, 10 (2000)CrossRefGoogle Scholar
  34. 34.
    S. Takase, Y. Aoto, Y. Shimizu, Processing of α-phase metal–phthalocyanine powders by interface neutralization method. Chem. Lett. 45(9), 1066–1068 (2016)CrossRefGoogle Scholar
  35. 35.
    W. Iwaya, S. Takase, Y. Shimizu, Wet-chemical preparation and oxygen reduction properties of nickel-based sulfide electrocatalysts for polymer electrolyte fuel cell. Electrochemistry 79(5), 364–366 (2011)CrossRefGoogle Scholar
  36. 36.
    G. I. Ca, M. A. Gulppi, C. A. Caro, R. Rı, and H. Zagal, 46, 3227 (2001)Google Scholar
  37. 37.
    L. Zhang, H. Li, J. Zhang, Kinetics of oxygen reduction reaction on three different Pt surfaces of Pt/C catalyst analyzed by rotating ring-disk electrode in acidic solution. J. Power Sources 255, 242–250 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied ChemistryKyushu Institute of TechnologyKitakyushuJapan

Personalised recommendations