Advertisement

Voltammetric Determination of Pb(II) Ions at a Modified Kaolinite-Carbon Paste Electrode

  • Seyi P. Akanji
  • Omotayo A. ArotibaEmail author
  • Duduzile NkosiEmail author
Original Research
  • 32 Downloads

Abstract

We report a novel application of a carbon paste electrode modified with sodium dodecyl sulphate (SDS) intercalated kaolin clay for the electrochemical detection of Pb2+in aqueous medium using square wave voltammetry. SDS was used to modify a chemically purified kaolin clay via intercalation process to prepare a carbon paste electrode. The SDS kaolin clay was obtained by intercalation of SDS into the interlayer spaces of kaolinite in the presence of heat. The purified kaolinite and its SDS intercalate were characterised using techniques such as X-ray powder diffraction (XRD), X-ray fluorescence (XRF), thermogravimetric analysis (TGA), attenuated total reflection Fourier transform infrared (ATR-FTIR), scanning electron microscopy (SEM), BET and CHNS elemental analysis. These techniques proved the successful intercalation of SDS into the interlayer spaces of the clay adsorbent. Various parameters affecting the electrochemical detection of Pb2+ were optimised. A linear current response was obtained in the concentration range of 1–100 ppb. The limit of detection was found to be 2.48 ppb. The proposed sensor also demonstrates good reproducibility after series of 10 repetitive measurements with a relative standard deviation (RSD) of about 6.30%. The interfering effects of some ions on the detection of Pb2+ were evaluated. The proposed sensor was applied for the determination of Pb2+ in a real water sample.

Graphical Abstract

SWASV of 50 ppb solution of Pb(II) using CPE (Carbon paste electrode), PKC-CPE (purified kaolinite-carbon paste electrode) and SDS-PKC CPE (sodium dodecyl sulphate intercalated kaolinite clay-carbon paste electrode).

Keywords

Clay minerals Purified kaolinite clay Sodium dodecyl sulphate–purified kaolinite clay Lead Carbon paste electrode Intercalation 

Notes

Acknowledgements

S.P Akanji wishes to thank Dr. James Ramontja and Prof. Philiswa Nomngongo of the Department of Applied Chemistry, UJ, for their kind support.

Funding Information

This work was supported by the following: The National Research Foundation South Africa, The Centre for Nanomaterial Science Research, University of Johannesburg (UJ), Department of Applied Chemistry and the Faculty of Science at UJ.

Supplementary material

12678_2019_552_MOESM1_ESM.docx (466 kb)
ESM 1 (DOCX 465 kb)

References

  1. 1.
    S. Dailianis, In: Mussels: anatomy, habitat and environmental impact. Nova science Publisherss, Inc. (2010)Google Scholar
  2. 2.
    P. Niu, C. Fernández-Sánchez, M. Gich, C. Ayora, A. Roig, Electrochim. Acta 165, 155–161 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Fakhri, N. Saha, S. Ghanbari, M. Rasouli, A. Miri, Food Chem. Toxicol. 118, 204 (2018)CrossRefGoogle Scholar
  4. 4.
    H.N. Tran, C.C. Lin, S.H. Woo, H.P. Chao, Appl. Clay Sci. 154, 17 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Manawi, G. McKay, N. Ismail, A. Kayvani Fard, V. Kochkodan, M.A. Atieh, Chem. Eng. J. 352, 828 (2018)CrossRefGoogle Scholar
  6. 6.
    B.K. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, Biosens. Bioelectron. 94, 443 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Gómez, L. Fernández, C. Borrás, J. Mostany, B. Scharifker, Talanta 85, 1357 (2011)CrossRefGoogle Scholar
  8. 8.
    B. Velde, Introduction to Clay Minerals: Chemistry, origins, uses and environmental significance. Chapman and Hall Ltd. New York (1992)Google Scholar
  9. 9.
    M.F. Brigatti, E. Galán, B.K.G. Theng, Handb. Clay Sci. 5, 21 (2013)CrossRefGoogle Scholar
  10. 10.
    G.K. Dedzo, C. Detellier, Appl. Clay Sci. 130, 33 (2016)CrossRefGoogle Scholar
  11. 11.
    L. Su, X. Zeng, H. He, Q. Tao, S. Komarneni, Appl. Clay Sci. 148, 103 (2017)CrossRefGoogle Scholar
  12. 12.
    X. Zuo, D. Wang, S. Zhang, Q. Liu, H. Yang, Minerals, 8, 112 (2018)Google Scholar
  13. 13.
    I.K. Tonlé, S. Letaief, E. Ngameni, A. Walcarius, C. Detellier, Electroanalysis 23, 245 (2011)CrossRefGoogle Scholar
  14. 14.
    E.O. Adeniyi, F. Ossa Ossa, J.D. Kramers, M.O. de Kock, G. Belyanin, N.J. Beukes, Mar. Pet. Geol. 91, 480 (2018)CrossRefGoogle Scholar
  15. 15.
    L.J. Poppe, V.F. Paskevich, J.C. Hathaway, D.S. Blackwood, U.S. Geological Survey, Open-File Rep. 01-041, 88 (2001)Google Scholar
  16. 16.
    F. Bergaya, G. Lagaly, Handb Clay Sci. 5, 213 (2013)CrossRefGoogle Scholar
  17. 17.
    S.-H. Lin, R.-S. Juang, J. Hazard. Mater. 92, 315 (2002)CrossRefGoogle Scholar
  18. 18.
    I.K. Tonle, S. Letaief, E. Ngameni, C. Detellier, J. Mater. Chem. 19, 5996 (2009)CrossRefGoogle Scholar
  19. 19.
    V.C. Farmer, Clay Miner. 7, 373 (1968)CrossRefGoogle Scholar
  20. 20.
    N.J. Saikia, D.J. Bharali, P. Sengupta, D. Bordoloi, R.L. Goswamee, P.C. Saikia, P.C. Borthakur, Appl. Clay Sci. 24, 93 (2003)CrossRefGoogle Scholar
  21. 21.
    G. Kakali, T. Perraki, S. Tsivilis, E. Badogiannis, Appl. Clay Sci. 20, 73 (2001)CrossRefGoogle Scholar
  22. 22.
    R. Grim, Clay Mineralogy (2nd ed. Mc GrawHill Book Company, Ney York 1968)Google Scholar
  23. 23.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  24. 24.
    H. Beitollah, M. Goodarzian, M.A. Khalilzadeh, H. Karimi-Maleh, J. Mol. Liq. 173, 137 (2012)CrossRefGoogle Scholar
  25. 25.
    A.O. Idris, N. Mabuba, O.A.A. Int, J. Electrochem. Sci. 12, 10 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical SciencesUniversity of JohannesburgDoornfonteinSouth Africa
  2. 2.Centre for Nanomaterials Science ResearchUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations