Hydrogen Oxidation in Alkaline Media: the Bifunctional Mechanism for Water Formation
- 120 Downloads
Abstract
Water formation according to Had + OHad →H2O has recently been proposed as an intermediate step during hydrogen oxidation in alkaline solutions. Choosing Ni/Cu bimetallic surfaces as model catalysts, we have investigated the energetics and kinetics of this step in the form of a bifunctional mechanism. With the aid of density functional theory, we have identified several reaction paths on such surfaces with very low activation energies, suggesting that this step can be very fast. In all cases, the initial adsorption sites have both nickel and copper atoms as nearest neighbors. We suggest a strategy to find other bifunctional surfaces with good catalytic properties for this reaction.
A bifunctional mechanism for the formation of water as an intermediate step for hydrogen oxidation is investigated by density functional theory. Using copper/nickel alloys of various compositions as an example, potential energy surfaces are calculated for various reaction paths. On some favorable sites the reaction may be too fast to be observed by electrochemical methods.
Keywords
Water formation Bifunctional mechanism Bimetallic surfaces Potential energy surfacesNotes
Acknowledgments
All authors thank Elizabeth Santos from Ulm University for useful discussions.
Funding Information
This study was financially supported by the Deutsche Forschungsgemeinschaft (FOR 1376). W.S. thanks CONICET for continued support. A generous grant of computing time from the Baden-Württemberg grid is gratefully acknowledged. P.Q. thanks PICT-2014-1084, CONICET, and UNL for support. D. Salmazo thanks CNPq-Brazil (248817/2013-2) for a fellowship.
References
- 1.N. Danilovic, R. Subbaraman, D. Strmcnik, K.-C. Chang, A.P. Paulikas, V.R. Stamenkovic, N.M. Markovic, . Angew. Chem. Int. Ed. 51, 12495 (2012)CrossRefGoogle Scholar
- 2.Y Wang, G Wang, G Li, B Huang, J Pan, Q Liu, J Han, L Xiao, J Lu, L Zhuang, . Energy Environ. Sci. 8, 177 (2015)CrossRefGoogle Scholar
- 3.J Li, S Ghoshal, MK Bates, TE Miller, V Davies, E Stavitski, K Attenkofer, S Mukerjee, Z-F Ma, Q Jia, . Angew. Chem. Int. Ed. 129, 15880 (2017)Google Scholar
- 4.D. Strmcnik, M. Uchimura, C Wang, R Subbaraman, N. Danilovic, D. van der Vliet, A. P. Paulikas, V. R. Stamenkovic, N. M. Markovic, . Nat. Chem. 5, 300 (2013)CrossRefPubMedGoogle Scholar
- 5.D. Salmazo, D. F. Juarez, A.G. Oshchepkov, O.V. Cherstiouk, A. Bonnefont, R.R. Natzmutdinov, W. Schmickler, E. Savinova, . Electrochim. Acta. 30, 452 (2019)CrossRefGoogle Scholar
- 6.E.S. Davydova, S. Mukerjee, F. Jaouen, D. Dekel, . ACS Catal. 8, 6665 (2018)CrossRefGoogle Scholar
- 7.M. Gong, D.Y. Wang, C.C. Chen, B.J. Hwang, H. Dai, . Nano Res. 9, 28 (2016)CrossRefGoogle Scholar
- 8.P. Quaino, G. Belletti, A. Shermukhamedov, D.V. Glukhov, E. Santos, W. Schmickler, R. Nazmutdinov, . PhysChemChemPhys. 19, 26812 (2017)Google Scholar
- 9.J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, . J. Electrochem. Soc. 152, J23 (2005)CrossRefGoogle Scholar
- 10.G.S. Karlberg, T.F. Jaramillo, E. Skulason, J. Rossmeisl, T. Bligaard, J.K. Nørskov, . Phys. Rev. Lett. 99, 126101 (2007)CrossRefPubMedGoogle Scholar
- 11.J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H.-J. Jonsson, . Phys. Chem. B. 108, 17886 (2004)CrossRefGoogle Scholar
- 12.E. Santos, P. Hindelang, P. Quaino, E.N. Schulz, G. Soldano, W. Schmickler, . Chemphyschem. 12, 2274 (2011)CrossRefPubMedGoogle Scholar
- 13.F. Juarez, D. Salmazo, E.-R. Savinova, P. Quaino, G. Belletti, E. Santos, W. Schmickler, . J. Electroanal. Chem. 832, 137 (2019)CrossRefGoogle Scholar
- 14.L. Pinto, P. Quaino, M. Arce, E. Santos, W. Schmickler, . ChemPhysChem. 15, 2003 (2014)CrossRefPubMedGoogle Scholar
- 15.P. Quaino, F. Juarez, E. Santos, W. Schmickler, . Beilstein J. Nanotechnol. 5, 846 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
- 16.E. Santos, P. Quaino, W. Schmickler, . Electrochim. Acta. 55, 4346 (2010)CrossRefGoogle Scholar
- 17.O.V. Cherstiouk, P.A. Simonov, A.G. Oshchepkov, V.I. Zaikovskii, T. Kardash, A. Bonnefont, V.N. Parmon, E.R. Savinova, . J. Electroanal. Chem. 783, 146 (2016)CrossRefGoogle Scholar
- 18.A.G. Oshchepkov, P.A. Simonov, O.V. Cherstiouk, R.R. Nazmutdinov, D.V. Glukhov, V.I. Zaikovskii, T.Y. Kardash, R.I. Kvon, A. Bonnefont, A.N. Simonov, V.N. Parmon, E.R. Savinova, . Top. Catal. 58, 1181 (2015)CrossRefGoogle Scholar
- 19.G. Henkelman, H. Jónsson, . J. Chem. Phys. 113, 9978 (2000)CrossRefGoogle Scholar
- 20.G. Henkelman, B. P. Uberuaga, H. Jónsson, . J. Chem. Phys. 113, 9901 (2000)CrossRefGoogle Scholar
- 21.J.L.C. Fajín, M.N.D.S. Cordeiro, F. Illas, J.R.B. Gomes, . J. Catal. 276, 92 (2010)CrossRefGoogle Scholar
- 22.J.L.C. Fajín, M.N.D.S. Cordeiro, F. Illas, J.R.B. Gomes, . J. Catal. 313, 24 (2014)CrossRefGoogle Scholar
- 23.A. Mohsenzadeh, K. Bolton, T. Richards, . Surf. Sci. 62, 71 (2014)Google Scholar
- 24.A. Mohsenzadeh, T. Richards, K.B. Surf, . Science. 64, 53 (2016)Google Scholar
- 25.H. Ibach. Physics of Surfaces and Interfaces, chapter 10 (Springer, Berlin, 2006)Google Scholar
- 26.Z-D He, Y-X Chen, E. Santos, W. Schmickler, . Angew. Chem. Int. Ed. 57, 2 (2018)CrossRefGoogle Scholar
- 27.J. J. Mortensen, L. B. Hansen, K. W. Jacobsen, . Phys Rev. B. 71, 035109 (2005)CrossRefGoogle Scholar
- 28.J. P. Perdew, K. Burke, M. Ernzerhof, . Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
- 29.Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu, H. Gao, . Adv. Mater. 21, 2777 (2009)CrossRefGoogle Scholar
- 30.H. J. Monkhorst, J. D. Pack, . Phys. Rev. B. 13, 5188 (1976)CrossRefGoogle Scholar