Advertisement

Electrocatalysis

, Volume 10, Issue 5, pp 584–590 | Cite as

Hydrogen Oxidation in Alkaline Media: the Bifunctional Mechanism for Water Formation

  • Fernanda JuarezEmail author
  • Debora Salmazo
  • Paola Quaino
  • Wolfgang SchmicklerEmail author
Original Research
  • 120 Downloads

Abstract

Water formation according to Had + OHadH2O has recently been proposed as an intermediate step during hydrogen oxidation in alkaline solutions. Choosing Ni/Cu bimetallic surfaces as model catalysts, we have investigated the energetics and kinetics of this step in the form of a bifunctional mechanism. With the aid of density functional theory, we have identified several reaction paths on such surfaces with very low activation energies, suggesting that this step can be very fast. In all cases, the initial adsorption sites have both nickel and copper atoms as nearest neighbors. We suggest a strategy to find other bifunctional surfaces with good catalytic properties for this reaction.

Graphical Abstract

A bifunctional mechanism for the formation of water as an intermediate step for hydrogen oxidation is investigated by density functional theory. Using copper/nickel alloys of various compositions as an example, potential energy surfaces are calculated for various reaction paths. On some favorable sites the reaction may be too fast to be observed by electrochemical methods.

Keywords

Water formation Bifunctional mechanism Bimetallic surfaces Potential energy surfaces 

Notes

Acknowledgments

All authors thank Elizabeth Santos from Ulm University for useful discussions.

Funding Information

This study was financially supported by the Deutsche Forschungsgemeinschaft (FOR 1376). W.S. thanks CONICET for continued support. A generous grant of computing time from the Baden-Württemberg grid is gratefully acknowledged. P.Q. thanks PICT-2014-1084, CONICET, and UNL for support. D. Salmazo thanks CNPq-Brazil (248817/2013-2) for a fellowship.

References

  1. 1.
    N. Danilovic, R. Subbaraman, D. Strmcnik, K.-C. Chang, A.P. Paulikas, V.R. Stamenkovic, N.M. Markovic, . Angew. Chem. Int. Ed. 51, 12495 (2012)CrossRefGoogle Scholar
  2. 2.
    Y Wang, G Wang, G Li, B Huang, J Pan, Q Liu, J Han, L Xiao, J Lu, L Zhuang, . Energy Environ. Sci. 8, 177 (2015)CrossRefGoogle Scholar
  3. 3.
    J Li, S Ghoshal, MK Bates, TE Miller, V Davies, E Stavitski, K Attenkofer, S Mukerjee, Z-F Ma, Q Jia, . Angew. Chem. Int. Ed. 129, 15880 (2017)Google Scholar
  4. 4.
    D. Strmcnik, M. Uchimura, C Wang, R Subbaraman, N. Danilovic, D. van der Vliet, A. P. Paulikas, V. R. Stamenkovic, N. M. Markovic, . Nat. Chem. 5, 300 (2013)CrossRefPubMedGoogle Scholar
  5. 5.
    D. Salmazo, D. F. Juarez, A.G. Oshchepkov, O.V. Cherstiouk, A. Bonnefont, R.R. Natzmutdinov, W. Schmickler, E. Savinova, . Electrochim. Acta. 30, 452 (2019)CrossRefGoogle Scholar
  6. 6.
    E.S. Davydova, S. Mukerjee, F. Jaouen, D. Dekel, . ACS Catal. 8, 6665 (2018)CrossRefGoogle Scholar
  7. 7.
    M. Gong, D.Y. Wang, C.C. Chen, B.J. Hwang, H. Dai, . Nano Res. 9, 28 (2016)CrossRefGoogle Scholar
  8. 8.
    P. Quaino, G. Belletti, A. Shermukhamedov, D.V. Glukhov, E. Santos, W. Schmickler, R. Nazmutdinov, . PhysChemChemPhys. 19, 26812 (2017)Google Scholar
  9. 9.
    J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, . J. Electrochem. Soc. 152, J23 (2005)CrossRefGoogle Scholar
  10. 10.
    G.S. Karlberg, T.F. Jaramillo, E. Skulason, J. Rossmeisl, T. Bligaard, J.K. Nørskov, . Phys. Rev. Lett. 99, 126101 (2007)CrossRefPubMedGoogle Scholar
  11. 11.
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H.-J. Jonsson, . Phys. Chem. B. 108, 17886 (2004)CrossRefGoogle Scholar
  12. 12.
    E. Santos, P. Hindelang, P. Quaino, E.N. Schulz, G. Soldano, W. Schmickler, . Chemphyschem. 12, 2274 (2011)CrossRefPubMedGoogle Scholar
  13. 13.
    F. Juarez, D. Salmazo, E.-R. Savinova, P. Quaino, G. Belletti, E. Santos, W. Schmickler, . J. Electroanal. Chem. 832, 137 (2019)CrossRefGoogle Scholar
  14. 14.
    L. Pinto, P. Quaino, M. Arce, E. Santos, W. Schmickler, . ChemPhysChem. 15, 2003 (2014)CrossRefPubMedGoogle Scholar
  15. 15.
    P. Quaino, F. Juarez, E. Santos, W. Schmickler, . Beilstein J. Nanotechnol. 5, 846 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    E. Santos, P. Quaino, W. Schmickler, . Electrochim. Acta. 55, 4346 (2010)CrossRefGoogle Scholar
  17. 17.
    O.V. Cherstiouk, P.A. Simonov, A.G. Oshchepkov, V.I. Zaikovskii, T. Kardash, A. Bonnefont, V.N. Parmon, E.R. Savinova, . J. Electroanal. Chem. 783, 146 (2016)CrossRefGoogle Scholar
  18. 18.
    A.G. Oshchepkov, P.A. Simonov, O.V. Cherstiouk, R.R. Nazmutdinov, D.V. Glukhov, V.I. Zaikovskii, T.Y. Kardash, R.I. Kvon, A. Bonnefont, A.N. Simonov, V.N. Parmon, E.R. Savinova, . Top. Catal. 58, 1181 (2015)CrossRefGoogle Scholar
  19. 19.
    G. Henkelman, H. Jónsson, . J. Chem. Phys. 113, 9978 (2000)CrossRefGoogle Scholar
  20. 20.
    G. Henkelman, B. P. Uberuaga, H. Jónsson, . J. Chem. Phys. 113, 9901 (2000)CrossRefGoogle Scholar
  21. 21.
    J.L.C. Fajín, M.N.D.S. Cordeiro, F. Illas, J.R.B. Gomes, . J. Catal. 276, 92 (2010)CrossRefGoogle Scholar
  22. 22.
    J.L.C. Fajín, M.N.D.S. Cordeiro, F. Illas, J.R.B. Gomes, . J. Catal. 313, 24 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Mohsenzadeh, K. Bolton, T. Richards, . Surf. Sci. 62, 71 (2014)Google Scholar
  24. 24.
    A. Mohsenzadeh, T. Richards, K.B. Surf, . Science. 64, 53 (2016)Google Scholar
  25. 25.
    H. Ibach. Physics of Surfaces and Interfaces, chapter 10 (Springer, Berlin, 2006)Google Scholar
  26. 26.
    Z-D He, Y-X Chen, E. Santos, W. Schmickler, . Angew. Chem. Int. Ed. 57, 2 (2018)CrossRefGoogle Scholar
  27. 27.
    J. J. Mortensen, L. B. Hansen, K. W. Jacobsen, . Phys Rev. B. 71, 035109 (2005)CrossRefGoogle Scholar
  28. 28.
    J. P. Perdew, K. Burke, M. Ernzerhof, . Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  29. 29.
    Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu, H. Gao, . Adv. Mater. 21, 2777 (2009)CrossRefGoogle Scholar
  30. 30.
    H. J. Monkhorst, J. D. Pack, . Phys. Rev. B. 13, 5188 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Theoretical ChemistryUlm UniversityUlmGermany
  2. 2.Institut de Chimie et Procédés pour l’Energie, l’Environnement et la SantéECPM Université de StrasbourgStrasbourgFrance
  3. 3.Instituto de Química Aplicada del Litoral (CONICET-UNL, FIQ)Universidad Nacional del LitoralSanta FeArgentina

Personalised recommendations