Composite Electrode Material Based on Electrochemically Reduced Graphene Oxide and Gold Nanoparticles for Electrocatalytic Detection of Ascorbic Acid

  • Arpad Szoke
  • Zoltan Zsebe
  • Graziella Liana TurdeanEmail author
  • Liana Maria MuresanEmail author
Original Research


A nanostructured composite matrix containing gold nanoparticles (AuNPs), graphene oxide (GO), and Nafion was immobilized on the surface of a glassy carbon electrode (GCE) by drop casting. The GO was electrochemically reduced (erGO), in order to obtain a modified interface (GCE/AuNPs-erGO-Nafion) able to detect l-ascorbic acid (AA) at lower oxidation potentials with increased sensitivity. The obtained modified electrode was investigated by cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and amperometry. The corroborated results showed that erGO and AuNPs at the interface act as a unique material having both high surface area (due to erGO) and high conductivity (due to AuNPs), being an effective electron transfer promoter in the electro-oxidation process of AA, lowering the oxidation potential of AA by ca. 0.400 V vs. Ag/AgCl,KClsat. The analytical parameters for AA detection at the modified GCE/AuNPs-erGO-Nafion electrode were determined by amperometry with a sensitivity of 39.07 ± 1.36 μA/mM and a detection limit of 2.76 μM AA (signal/noise ratio of 3). The GCE/AuNPs-erGO-Nafion-modified electrode is simple to prepare, reliable, and with high sensitivity and was applied successfully in the routine analysis of AA in pharmaceutical products.

Graphical Abstract



Electrochemically reduced graphene oxide Gold nanoparticles l-ascorbic acid 



The authors thank Dr. Katona Gabriel for the TEM measurements.

Supplementary material

12678_2019_543_MOESM1_ESM.doc (396 kb)
ESM 1 (DOC 395 kb)


  1. 1.
    O.C. Ozoemena, L.J. Shai, T. Maphumulo, K.I. Ozoemena, Electrocatalysis 1, –11 (2019)Google Scholar
  2. 2.
    P. Krzyczmonik, E. Socha, S. Skrzypek, Electrochemical detection of glucose in beverage samples using poly(3,4-ethylenedioxythiophene)-modified electrodes with immobilized glucose oxidase. Electrocatalysis 9(3), 380–387 (2018)CrossRefGoogle Scholar
  3. 3.
    R.R. Eitenmiller, L. Ye, W.O. Landen, Vitamin Analysis for the Health and Food Sciences, 2nd Edition, Chapter 5 (CRC Press, Boca Raton, 2008), pp. 231–290Google Scholar
  4. 4.
    L. Zhang, X. Lin, Y. Sun, Separation of anodic peaks of ascorbic acid and dopamine at an α-alanine covalently modified glassy carbon electrode. Analyst 126(10), 1760–1763 (2001)CrossRefGoogle Scholar
  5. 5.
    K.-C. Lin, P.-C. Yeh, S.-M. Chen, Int. J. Electrochem. Sci. 7, 12752–12763 (2012)Google Scholar
  6. 6.
    Y. Chen, A.W. Hassel, A. Erbe, Enhancement of the electrocatalytic activity of gold nanoparticles towards methanol oxidation. Electrocatalysis 2(2), 106–113 (2011)CrossRefGoogle Scholar
  7. 7.
    W. Huan, X. Li-Guang, C. Xue-Feng, C. Yao-Dan, Y. Xiao-Tian, Chin. J. Anal. Chem. 44, 1617–1625 (2016)Google Scholar
  8. 8.
    C. Wang, F. Ye, H. Wu, Y. Qian, Int. J. Electrochem. Sci. 8, 2440–2448 (2013)Google Scholar
  9. 9.
    T. Madrakian, E. Haghshenas, A. Afkhami, Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differential pulse voltammetric method. Sens. Actuat. B 193, 451–460 (2014)CrossRefGoogle Scholar
  10. 10.
    Q. Zhua, J. Baoa, D. Huoa, M. Yanga, C. Houa, J. Guoa, M. Chena, H. Fa, X. Luoa, Y. Ma, 3D graphene hydrogel – gold nanoparticles nanocomposite modified glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Sens. Actuat. B 238, 1316–1323 (2017)CrossRefGoogle Scholar
  11. 11.
    C.-L. Sun, H.-H. Lee, J.-M. Yang, C.-C. Wu, The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron. 26(8), 3450–3455 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Nithya, Electrochemical sensing of ascorbic acid on zno-decorated reduced graphene oxide electrode. J. Biosens. Bioelectron. 6(1–9) (2015)Google Scholar
  13. 13.
    T. Peik-See, A. Pandikumar, H. Nay-Ming, L. Hong-Ngee, Y. Sulaiman, Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode. Sensors 14(8), 15227–15243 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Heli, Amperometric determination of ascorbic acid in pharmaceutical formulations by a reduced graphene oxide-cobalt hexacyanoferrate nanocomposite. Iran. J. Pharm. Res. 14(2), 453–463 (2015)Google Scholar
  15. 15.
    J.I. Paredes, S.V. Rodil, M.J.F. Merino, L. Guardia, A.M. Alonso, J.M.D. Tascon, Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. J. Mater. Chem. 21(2), 298–306 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014)Google Scholar
  17. 17.
    S. Cinti, F. Arduini, M. Carbone, L. Sansone, I. Cacciotti, D. Moscone, G. Palleschi, Screen-printed electrodes modified with carbon nanomaterials: a comparison among carbon black, carbon nanotubes and graphene. Electroanalysis 27(9), 2230–2238 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)CrossRefGoogle Scholar
  19. 19.
    W. Huang, Q. Hao, W. Lei, L. Wu, X. Xia, Polypyrrole-hemin-reduce graphene oxide: rapid synthesis and enhanced electrocatalytic activity towards the reduction of hydrogen peroxide. Mater. Res. Express 1(4), 045601 (2014)CrossRefGoogle Scholar
  20. 20.
    C.T.J. Low, F.C. Walsh, M.H. Chakrabarti, M.A. Hashim, M.A. Hussain, Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54, 1–21 (2013)CrossRefGoogle Scholar
  21. 21.
    K.Q. Deng, J. Zhou, X.F. Li, Direct electrochemical reduction of graphene oxide and its application to determination of l-tryptophan and l-tyrosine. Colloids Surf. B: Biointerfaces 101, 183–188 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Kauppila, P. Kunnas, P. Damlin, A. Viinikanoja, C. Kvarnström, Electrochemical reduction of graphene oxide films in aqueous and organic solutions. Electrochim. Acta 89, 84–89 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Song, L. Xu, R. Xing, Q. Li, C. Zhou, D. Liu, H. Song, Sci. Rep-UK 4, 7515 (2014)CrossRefGoogle Scholar
  24. 24.
    V.V. Neklyudov, N.R. Khafizov, I.A. Sedov, A.M. Dimiev, New insights into the solubility of graphene oxide in water and alcohols. Phys. Chem. Chem. Phys. 19(26), 17000–17008 (2017)CrossRefGoogle Scholar
  25. 25.
    Á.F. Szőke, G.S. Szabó, Z. Hórvölgyi, E. Albert, L. Gaina, L.M. Muresan, Eco-friendly indigo carmine-loaded chitosan coatings for improved anti-corrosion protection of zinc substrates. Carbohyd. Polym. 215, 63–72 (2019)CrossRefGoogle Scholar
  26. 26.
    M.E.I. Ahmed, S. Eng, Soc. J. 52(47), 45–55 (2006)Google Scholar
  27. 27.
    J. Li, S. Guo, Y. Zhai, E. Wang, High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Analyt. Chim. Acta 649(2), 196–201 (2009)CrossRefGoogle Scholar
  28. 28.
    L.C. Cotet, K. Magyari, M. Todea, M.C. Dudescu, V. Danciu, L. Baia, Versatile self-assembled graphene oxide membranes obtained under ambient conditions by using a water–ethanol suspension. J. Mat. Chem. A 5(5), 2132–2142 (2017)CrossRefGoogle Scholar
  29. 29.
    G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241(105), 20–22 (1973)CrossRefGoogle Scholar
  30. 30.
    M. Beltowska-Brzezinska, A. Zmaczynska, T. Luczak, Effect of gold modification with 3-mercaptopropionic acid, cysteamine and gold nanoparticles on monoethanolamine electrooxidation. Electrocatalysis 7(1), 79–86 (2016)CrossRefGoogle Scholar
  31. 31.
    A.A. Nascimento, L.M. Alencar, C.R. Zanata, E. Teixeira-Neto, A.P.M. Mangini, G.A. Camara, M.A.G. Trindade, C.A. Martins, First assessments of the influence of oxygen reduction on the glycerol electrooxidation reaction on pt. Electrocatalysis 10(1), 82–94 (2019)CrossRefGoogle Scholar
  32. 32.
    M.L. Belfar, T. Lanez, A. Rebiai, Z. Ghiaba, Int. J. Electrochem. Sci. 10, 9641–9651 (2015)Google Scholar
  33. 33.
    G. Ziyatdinova, E. Ziganshina, H. Budnikov, Voltammetric determination of β-carotene in raw vegetables and berries in Triton X100 media. Talanta 99, 1024–1029 (2012)CrossRefGoogle Scholar
  34. 34.
    Á.F. Szoke, G.L. Turdean, G. Katona, L.M. Muresan, Stud. UBB Chem. 61, 135–144 (2016)Google Scholar
  35. 35.
    A. Szőke, G. Turdean, L. Muresan, Bulg. Chem. Commun. 49(C), 147–154 (2017)Google Scholar
  36. 36.
    G.T. Gnahore, T. Velasco-Torrijos, J. Colleran, The selective electrochemical detection of dopamine using a sulfated β-cyclodextrin carbon paste electrode. Electrocatalysis 8(5), 459–471 (2017)CrossRefGoogle Scholar
  37. 37.
    G. Hu, Y. Ma, Y. Guo, S. Shao, Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode. Electrochim. Acta 53(22), 6610–6615 (2008)CrossRefGoogle Scholar
  38. 38.
    S.L. Mu, J.Q. Kan, The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of ferrocenesulfonic acid. Synth. Met. 132(1), 29–33 (2002)Google Scholar
  39. 39.
    J.G. Ren, H.X. Zhang, Q.L. Ren, C.K. Xia, J. Wan, Z.B. Qin, Study of the catalytic electro-oxidation of ascorbic acid on an electrode modified by macrocyclic compounds of Fe(III), Mn(III), Ni(II), and Co(II) with TBP. J. Electroanal. Chem. 504(1), 59–63 (2001)Google Scholar
  40. 40.
    R. Gupta, V. Ganesan, Gold nanoparticles impregnated mesoporous silica spheres for simultaneous and selective determination of uric acid and ascorbic acid. Sens. Actuat. B 219, 139–145 (2015)CrossRefGoogle Scholar
  41. 41.
    S. Karra, M. Wooten, W. Griffith, W. Gorski, Morphology of gold nanoparticles and electrocatalysis of glucose oxidation. Electrochim. Acta 218, 8–14 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Research Center of Electrochemistry and Non-Conventional Materials“Babeș Bolyai” UniversityCluj-NapocaRomania

Personalised recommendations